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FOREWORD

The Image Understanding Program is planned to be a five year research effort
to develop the technology required for automatic and semiautomatic interpretation and
analysis of military photographs and related images. This program, now in its second
year of Defense Advanced Research Projects Agency (DARPA) sponsorship, was initially
funded in 1976.

This document contains papers submitted by various research personnel working
on projects in the Image Understanding Program. These papers were presented on April
20, 1977 at the fifth Image Understanding Workshop held in Minneapolis, Minnesota. The
Workshop was hosted by Dr. T. F. Hueter, Vice President for Corporate Technology,
Honeywell, Inc.

The current DARPA program includes four University/Industrial teams:
University of Southern California - Hughes Research Laboratories
University of Maryland - Westinghouse, Inc.

Purdue University - Honeywell, Inc.
Carnegie-Mellon University - Control Data Corporation

There are also five individual DARPA-sponsored research efforts included:
Massachusetts Institute of Technology
Stanford University
University of Rochester
Stanford Research Institute
Honeywell, Inc.

The purpose of the workshop was to enable various program researchers to
present interesting technical accomplishments achieved during the past six months.
The status of each of the diverse projects including future research plans and goals
were also agenda objectives. 1In this way, by stimulating cross-fertilization dis-
cussions, it was hoped to assist community-wide understanding of the individual
research efforts. Since the participants included personnel from the military research
and development community, as well as representatives from interested user organi-
zations, the workshop served as a means to provide a 'dialogue“ between researcher and
user. Such information exchange is considered a must by DARPA management in order to
facilitate technology transfers. $v--f-’”"" e

The workshop was organized into four sessions which ranged from the broadest
applications down to more specific investigations. Each principal investigator pre-
sented his program for review. A general discussion period open to all participants
was conducted following the presentations.

The Image Understanding Program is under the direction of Major David L.
Carlstrom, USAF, of the Defense Advanced Research Projects Agency (DARPA), Information
Processing Techniques Office. The cover design of this document was taken from a
diagram used by Major Carlstrom to explain the hierarchial processing required to
convert basic image data into real-time information for decisionmakers. Major
Carlstrom has repeatedly reminded researchers that this end result must be clearly
kept in mind as finite improvements are achieved at each level along the way.
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The conference organizer wishes to thank Dr. William A. Sander of the Army
Research Office; LTC George W. McKemie of the Air Force Office of Scientific Research;
Mr. John S. Denhe of the U. S. Army Night Vision Laboratory; and Dr. John J. Knab of
the Air Force Avionics Laboratory for acting as moderators for the technical sessions.
Also, Mr. Rod Larson and Ms. Beverley Jensen of Honeywell, Inc. were most instrumental
in the conduct of the workshop by securing facilities, making arrangements and
generally assisting in the coordination necessary to provide for the needs of the
participants. Typing support and collection and arrangements of papers was accomplished
by Ms. Gloria Wilkie of Science Applications, Inc.

Lee S. Baumann
Science Applications, Inc.
Workshop Organizer
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SPATIAL UNDERSTANDING

R.D. Arnold

T.O.

Binford

D.B. Gennery

Artificial Intelligence Laboratory, Computer Science Department
Stanford University, Stanford, California 94305

Abstract

We present recent progress in stereo photointer-
pretation applied to vehicle location and build-
ing location: segmentation of vehicles from
ground, and preliminary description of their
shape preliminary to identification of vehicles
in aerial images of suburban scenes; segmenta-
tion of vehicles from ground in ground level
images; preliminary results in segmentation and
description of buildings in aerial images; a new
technique for feature-based stereo in which edge
fragments are linked into smooth curves in 3d;
depth mapping based on area correlation.

Introduction

Our goal has been to develop techniques for passive
ranging in PI and guidance using sequences of
images from a moving observer. We have two other
goals: first, to describe and identify objects
seen from a variety of viewpoints, in this case
aerial and ground views; second, to use edge
features in order to exploit the ARPA "smart
sensor' technology, and to increase the accuracy
with which measurements can be made.

Our program is called Spatial Understanding. The
aim of the program is to build descriptions which
are segmented into surfaces and volumes, and to
match segmented spatial descriptions. In terms of
interactive aids to photointerpretation, the
importance of this approach is that it makes use of
stereo, and that its representations are intui-
tively natural to humans. Natural representations
are essential to our next phase of interactive
programming of PI tasks.

At the last image Understanding workshop, we
presented results on finding the ground surface in
aerial images. We summarize those results as an
introduction to the current research. The system
starts with a sequence of images. The system first
orients itself by finding an Observer Model for the
sequence of images. It uses the Observer Model to:
limit search in subsequent ranging; calculate range
to image points; to guide itself toward a target,
or away from obstacles.

Building the Ubserver Model takes at least half the
total time in finding the ground surface. The
Observer Model can be calculated from accurate
guidance information, thus eliminating half the
computation. Any guidance information helps. 1In

most cases, enough guidance information and know-
ledge about the scene is available to cut the
computation time by large factors from those
quoted below.

The system first finds a small sample of interest-
ing features in one image and matches them with
their corresponding view in the other image. The
Observer Model can be found from 5 features which
are non-degenerate. Typically, 10 features are
used because some feature matches may be wrong and
some sets of features may be degenerate. Interest-
ing features are small areas which can be local-
ized in two dimensions without an Observer Model.
Those are features which are not invariant along
any direction. Lines are not localizable, but
corners are.

A 2d search is necessary to match features without
an Observer Model. An important contribution is
the binary search correlation algorithm which
finds matches anywhere in the image in only 50
msec. It uses a coarse-to-fine binary search
strategy: it first searches on a coarse version
of the image (16x16); then it searches in higher
resolution images (32x32, 64x64, etc), each time
in the neighborhood of the best match in the
previous image. It has an error rate of about 10%
false matches in an extensive set of images. It
encounters fewer ambiguities than brute force
matching since not only must the feature match,
but the surrounding context must match also.

The system selects a larger sample of interesting
points to find corresponding views in the two
images. It then finds a ground surface (quadratic)
for small portions of the scene. The ground
surface finder maximizes a function which favors

as many points as possible near the surface and as
few points as possible below the ground surface.

Approximate timings for these modules on a PDP
KL/10 are:

Interest operator 75 msec

Binary search correlator 50 * N1 msec

Observer Model solver 250 * N1 msec
where N1 is the number of points in the sample
used to determine the Observer Model (typically
10).

Tl= 75 msec + 300 * N1 msec (typically 3.1 sec)
where Tl is the time required to determine the
Observer Model. Solution of the Observer Model
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requires 80% of the computation time required for
obtaining the Observer Model. It is expected that
the solution can be speeded up a factor of 5
(although it has been carefully constructed with
concern for efficiency). That would make T1

typically 1.1 sec.

Timings for the ground surface finding are:
Range Sample 50 * N2 msec
Ground Surface solver 5 * N2 msec

where N2 is the number of range points in the

sample, typically 50.

T2= 55 * N2 msec (typically 2.7 sec)

where T2 is the time required to determine the

ground surface model, given the Observer Model.

Finding the ground surface model can be speeded up.
The Observer Model makes it economical to make a
range map. A point in one view corresponds to a
ray in space, which corresponds to a line in the
other view. Nearby points usually have approxi-
mately the same disparity. Thus, search can be
limited to a small interval on a iine. We have
estimated that about 2 msec per point are necessary
for this search, which would make T2 = 7 * N2 msec
(typically .35 sec). For many missions in PI or
guidance, enough information will be available from
instrumentation or inertial guidance to eliminate
determination of the Observer Model, and to allow
frame to frame tracking times less than a second on
an ordinary computer. We estimate that the
computation time will be approximately twice as
long on a PDP11/45.

Ground surface finding should work for images from
a variety of sensors and including contrast
reversal. The binary search algorithm used in
obtaining the range sample for the Observer Model
should be successful where depth differences in
the scene are small compared to the range

(almost always true in aerial images) ana images
are similar (not true for different sensors).
Binary search probably will fail at the coarse
stage in dissimilar parts of scenes. It is pos-
sible to instead match curves in images, using
techniques developed here. Curve matching should
be effective even in these cases. Alternatively,
guidance information may be used to obtain the
Observer Model in those cases.

Range Mappirng

A routine now maps ranges over whole images, using
area correlation. It has made a dense map of
ranges in a pair of images of vehicles in a
parking lot, taken from near ground level. The
range map was used as input for the ground plane
finder. Figure 1 shows one of a pair of images.
Figure 2 shows the heights of areas which are at
least two feet above ground level. These areas
coincide with the two cars in the images, and
heights are reasonably accurate.

The routine uses a high-resolution correlator to
obtain as much accuracy as possible. The corre-
lator calculates a probability of match, inter-
polates to the best match, and calculates position
errors in match. The ground plane finder uses
these estimates of positinn errors. The range

mapper accepts matches only if they satisfy
reasonable probability of match, and if a neighbor
matches at similar disparity. The mapping
routine uses both the Observer Model and contin-
uity of depth surfaces to limit search. It
searches initially near neighboring matches; when
necessary, it carries out a full search along the
ray from minimum distance to infinity.

Car Location

We have developed a new technique for edge match--
ing and curve linking in stereo. Ranging based on
matching edge features increases the accuracy of
determining boundaries of objects by a factor of
about 20. This makes it possible to use fairly
accurate estimates of object size. Edges also
provide additional information about surface mark-
ings which are not available in stereo based on
area correlation.

The technique has been used for segmentation and
description of vehicles in aerial images. Figure
3 shows part of an image from a pair of a parking
lot. Figure 4 shows edges 2 feet or more above
ground level, in a coordinate system with x axis
along the stereo baseline. Edges have been
linked together and fit with straight lines.
Rectangles have been fit to the vehicles, with
approximately the right orientation and size. We
expect the system to identify cars soon.

Edge elements (edgels) are linked into smooth
curves in 3d. Not only must they link up in the
image, but they must be continuous in disparity
also. The matching and linking process makes use
of the Observer Model and ground surface model
which are already determined. It first transforms
edgels to a standard stereo system (x', y') with
the baseline along the x' axis. Edges in Figure 4
are shown in the stereo coordinate system. The
display is distorted slightly because of the
aspect ratio of the display. Each edgel is put
into a cell in an (x', y') grid. Each cell is

8x8 pixels square in (x', y'); it contains a list
of edgels in the cell. View 1 is scanned cell by
cell. For each edgel, the routine looks at all
edgels in view 2 with permissible disparities. It
ignores edgels near the stereo axis (within 25
degrees). It rejects any pairs which are more
than 1 radian apart in angle. The routine could
make use of special knowledge about horizontal
edges to make tight limits on angle. That special
case is useful for vehicles and for buildings. The
routine also requires that pairs match in contrast
(sum of squares of signal) and brightness. It
picks the best match.

Then the routine makes another pass through the
array. It looks in a 16x16 pixel area around each
edgel in view 1. It checks to see whether
neighbor edgels are colinear and compatible in
contrast and brightness, and whether they match in
view 2 with consistent disparity. If there are 2
neighbor edgels which link in this way, then the
edgel is accepted. A line is fit to the list of
linked edges.

Linked edges are given to the rectangle finder. It

N




finds the maximum of a histogram of edges versus
angle module 90 degrees to find the orientation,
theta, of the rectangle. It computes transformed
coordinates in a system (u,v) rotated along theta.
Then it finds clusters in histograms with respect
to u and v separately. It takes all combinations
of clusters to compute the product of all prob-
abilities for that rectangle. The combination
with the max probability is assumed to be the
answer. It calculates the greatest lower bound in
cases in which the rectangle is not bounded along
one side, and uses default information on length
and width where necessary.

Car Models

Cars are modeled by planes and boxes. Planes and
edges are nearest to observable. There are
vertical planes and horizontal planes. The box
model of cars consists of two boxes, one on top of
the other. The sizes of the boxes have a relative-
ly small range. The upper box is at an approxi-
mately constant location from the front of the
lower box. In some cases, this enables distin-
guishing front from rear. The approximate dimen-
sions of the upper box are: height 56", width 60"
and length 80". It has a horizontal top and
vertical sides. The lower box has dimensions:
height 36", width 60" and length 160".

Buildings

The same techniques are being used to segment
buildings from ground, to model the segmented
objects, and to form building models. We expect
the techniques to work better. Buildings are
larger, they are more planar. We expect to
present preliminary results in description of
buildings.

Figure 1
Ground Level View of Parking Lot

Figure 2
Height of Areas 2ft. or More Above Ground Sur
Surface (From Figure 1)
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Figure 3
Aerial View of Parking Lot

Figure 4
In Stereo Coordinate System
Left: Linked Edges 0-2ff. Above Ground
Right: Linked Edges 3-6ft. Above Ground

Figure 5
Rectangle Fit to Upper Car
In Stereo Conrdinate System




REPRESENTATION AND USE OF KNOWLEDGE IN A GOAL-DIRECTED VISION SYSTEM

C. Brown and K. Lantz

Computer Science Department
The University of Rochester

ABSTRACT

A vision system is described which is
geared to:

- extracting information efficiently
at variable levels of detail;

- allowing users to bring to bear
specialized knowledge about stra-
tegies, representations, and
techniques;

- representing and using general and
map-derived knowledge in semantic
net form;

- providing nonstandard control struc-
ture, rudimentary automatic
inferencing, and facilities for
automatic procedure selection.

An illustration is provided by current work
in ship-finding.

1. INTRODUCTION

For some time we have been developing a
general vision system. Sections 1, 2, and 3.4.1
are condensed from [Baliard, Brown and Feldman],
in which more detail may be found. The system is
structured in three layers. At one end of the
structure is a semantic network, the world model;
it contains idealized prototypes of structures
from Tow level (such as edges) to high level (e.g.
complex assemblages of world objects?. In the
middle we have a sketchmap. This data structure
is synthesized during image analysis and provides
a mapping between the model and the image. At
the other end is the image data structure, con-
sisting of the original image and various pro-
cessed versions of it.

The concept of a query is central to our ap-
proach to image analysis. Given a richly descrip-
tive image model, a query in the form of a
special-purpose program can be coded in such a way
as to require mapping a minimum of model structure
into the image. Another aspect of the design is
the retention and use of information gained in
previous tasks so that mappings may be refined
over a succession of queries. Examples might be:

~ returning to an aerial photo on
different days to perform differ-
ent tasks;

- generating different special-purpose
maps from the same photo.

For this approach to image analysis, it is
important to define a representation that allows
extensions to partial mappings which may be
known a priori or acquired sequentially. For
efficiency, we want a way of defining quantita-
tively when the query has been satisfied so that
we do not perform unnecessary mappings.

Queries will initially be made by writing
programs, but the system will not consist of one
or more monolithic programs that rigidly solve
single specialized problems. Rather, a central
concern is to develop the idea of standard repre-
sentations for common low- and high-level objects
so as to facilitate communication between proce-
dures. Standard representations, if they can be
found, will explicate some primitive constructs
useful in vision, and will make vision program-
ming easier. If in addition the representations
are machine-interpretable, then the programs can
begin to monitor, reason about, and affect their
own performance. An important object in the
system is the procedure. Procedures are often
attached to objects (a "how to find it" procedure,
for instance), and an automatically-interpretable
description of the actions and characteristics
of procedures may be used to choose automatically
the most reliable, cheap, or accurate procedure
for a given job. Also, such descriptions allow
for incremental, modular extensions to the power
of the system without any reprogramming (see
Section 3.4.1).

2. SOME GENERAL ASPECTS OF THE SYSTEM
2.1. MODEL STRUCTURES

In a query-oriented system, one does not
always want to perform an exhaustive initial
segmentation of the scene into regions, line seg-
ments, or anything else. Such segmentation may
be at a level of detail which is too coarse or
too fine to reveal what one wishes to know. Fur-
ther, even when segmentation is data-directed, a
uniform algorithm producing a continuum of




intermediate data structures may be too inflexible
and (given present understandings) inefficient.

We desire to replace mandatory processing
through many levels of detail by modelling objects
at many useful levels of detail, and using pro-
cedures capable of selecting different image
resolutions. The supposition is that the purposes
of the query will stop the analysis at the mini-
mum necessary level of development.

The model holds several kinds of knowledge
about the image domain (see Section 3.2). It
includes a relational network of nodes which are
identifiable with (primitive and complex) objects
and concepts in the domain from which the scene
is taken. The answer to a query is a sketchmap
consisting of instantiations of model nodes. The
model, therefore, contains knowledge in the form
of all potential instantiable descriptions. An
example of this kind of knowledge is the assertion
"docked ships are adjacent to docks." It is po-
tentially part of the model-image mapping since
both "ship" and "dock" could be instantiated with
pointers to regions of the image.- The model also
contains knowledge not in the form of a mappable
assertion but still useful in mapping, for in-
stance: "ships are about 6 times as long as wide,
and are about 300 feet long."

Model nodes are identifiable with concepts
in the scene domain and each has links to other °
nodes; they have a rich structure (see Section
3.3). Procedures may be attached to nodes to
allow choice of control regimes, but we do not
envision that the structure will be self-activat-
ing.

In the process of synthesizing a model-image
mapping, special-purpose procedures generate and
use many kinds of knowledge in the form of image
data structures, parameters, operators, and
descriptions of their results. A structuring of
this diverse knowledge is provided by standard
data objects which are used for communication
between the various knowledge sources and the
users.

One example of an important standard object
is the location descriptor, which contains what
is known of how to locate an entity. One aspect
of location description has been called [Bolles]
a tolerance region. There are many advantages to
having a standard representation for object loca-
tions:

- If such descriptions are data types,
their computations can be separated
from the procedures that use them.
If they can be passed as arguments,
they provide a certain “common
currency" between procedures, thus
simplifying and modularizing the
procedures that use them.

- Location descriptors can represent
approximate locations, which is use-
ful for queries unconcerned with
exact answers.

- Constraints between locations can
propagate knowledge throughout the
model (see Section 3.4.2). Loca-
tion descriptors can be computed
from other location descriptors via
relations, or by union and inter-
section of the described point sets.
A system which applied linear pro-
gramming techniques to the problem
of locating regions through con-
straints placed on their boundaries
was developed in [Taylor].

- Use of locatiop descriptors is geared
to an abandonment of the exhaustive
segmentation paradigm wherein every
region must correspond to some ob-
ject. Different location descrip-
tors may refer to disjoint point
sets or may overlap on the image,
and different objects may have
similar location descriptors.

2.2. IMAGE AND MAP STRUCTURES

In the process of analyzing an image many
intermediate, processed image data structures
will be generated. We plan to attach a descrip-
tion to each of these structures. This will
facilitate the writing of large processing pro-
cedures in the following ways:

- entire structures can be passed to
procedures as arguments;

- intermediate results can be stored
in a standard way;

- image transfer through computer net-
works will be facilitated [Maleson
and Rashid].

The system uses a version of the Array of
Image Samples format proposed in [Sproull and
Baudelaire], extended to contain information
from processed and interpreted images as well as
stylized, pictorial structures isomorphically
related to the image, such as topographic maps.

A "map" is a useful entity for tops-down
image analysis; we take a map to be any data
structure which contains information about how
we expect an image to look. It may have a large
amount of metric information, as would the topo-
graphic map mentioned above. It may be a finite
set of assertions giving purely relational infor-
mation. Maps may thus give only enough informa-
tion for a specific purpose.

For topographic maps, the system will use
something 1ike an extended GIST format [Lemmer],
consisting of point, linear, and area features
inverted on feature type, as well as a potential
for raster information. Typically only a small
subset of a topographic map is relevant to any
given image understanding task. The system may
need routines for converting (in some directions)
between the various representations of maps.
Especially useful is conversion of linear fea-
tures into raster data.




2.3. CONTROL

The procedures attached to nodes of the model
could be run in the style of active knowledge
[Freuder] or in any other nonstandard control
regime. These control structures have been used
to achieve knowledge propagation, shifts of at-
tention, parallel processing, etc.

Some control will be overseen by the system
(see Section 3.4). However, the system is at
present not committed to any particular control
regime. We are interested in finding out what
control primitives are the most helpful, but as
yet do not feel strongly enough about any scheme
to restrict the user to some system control philo-
sophy. We will be making queries at several
levels of detail; we will (initially, at least)
code into the query strategies for answering the
question at the right level of detail rather
than expecting the model to provide them. The
model will be considered more as a data structure
than as a description of control.

3. SPECIFIC ASPECTS OF THE MODEL
3.1. REPRESENTATION

Our system is partitioned into model, sketch-
map, and image. The image component consists
solely of data--the image at various magnifica-
tions, resolutions, etc. The model and sketch-
map, on the other hand, comprise knowledge about
the world; the model represents generic know-
ledge, whereas the sketchmap is a specific in-
stantiation of a subset of the model. We will
express the conient of the model with constructs
from Knowledge Representation Language (KRL)
[Bobrow and Winograd].

In our system the basic object is a node.
A node is a referent for an entity or category in
the "world" being represented. Nodes have a name
(e.g., "shape object," "linear feature," or
“ship"), type, and a variable number of associated
properties, or slots. A generic node is a proto-
type; an instantiation thereof is an individual.
A slot is effectively a (property, value) pair--
for example, the tonnage of a ship is 100000 tons,
or its silhouette is given by a point set. Slots
may contain procedures to be called as circum-
stances warrant; they can serve the role of "ser-
vants" and "demons" for propagating or acquiring
knowledge.

KRL, as formulated by Bobrow and Winograd,
is LISP-ish in syntax. In what follows we will
employ a syntax based on the fact that our system
is written in LEAP [Feldman and Rovner]. Nodes
are constructed from associations (triples). The
LEAP association

<attribute> of <object> = <value>
or

<slot> of <node> = <value>

encodes a semantic net representation wherein
the <attribute> (<slot>) links the two entities
<object> (<node>) and <value>. In this discus-
sion we represent a typical prototype node as
follows:

[ <node-name>

nodetype: <node-type>
isa: <node>

son: <node>
<slot-name>1 : <value>
;slot-name>n : <value> ]

A basic activity of image understanding is
finding individuals and deducing certain of their
properties. When this happens, an "individual"
instance of a prototype node is created with just
those properties that are relevant to the task
at hand. Such “"partial instantiations" are easy
in LEAP. An individual may be characterized in
a natural way as:

a <node> with <slot-name>1 = value

value

n

<slot-name>n

Generic properties are found by following the
isa links through the hierarchy of individuals
and prototypes.

3.2. STRUCTURE OF THE MODEL

The vision "universe" is composed of the
real world, the image, and abstract entities.
The world is composed of objects--ships, docks,
oceans, roads, posts, etc. At a higher level
these can be grouped into area objects (oceans),
shape objects (ships), linear objects (coast-
lines), and point objects (bows of ships); at a
Tower level the viewer sees particular instan-
tiations of ships, docks, and coastlines--i.e.,
he sees individuals. The image, on the other
hand, is composed of features--lines, edges,
points, regions. As with world objects,
features can be grouped into area, shape, linear,
and point features, and instantiated to yield
particular individuals.

To describe the image and the world, and to
correlate the two, it is necessary to deal with
abstract entities. One such abstract entity
is the location descriptor, which relates loca-
tions of nodes to coordinate systems, which are
themselves abstract entities. Other abstract
entities are points, point sets, line segments,
coordinate systems, chain codes, etc. Such
entities comprise the third fundamental partition
of the vision model; many of them represent know-
ledge concerning relationships between the world
and the image. Our basic model structure, then,
appears as in Figure 1.




Model

World Object
Area Object ..
Shape Object
Ship
Ship001 ...

Linear Object ...
Point Object ...

Abstract Entity

Coordinate System...

Location Descriptor
Area Location Descriptor ...
Shape Location Descriptor ..
Linear Location Descriptor ...
PPoint Location Descriptor ...

Point ...

Image Feature
Area Feature ...
Shape Feature ...
Linear Feature
Line
Line0O01 ...

Poiﬁi.Feature e

Figure 1

3.3. SHIPS: AN EXAMPLE OF NODE SEMANTICS

In Figure 1, Ship001 is an instance of a
prototype Ship. Ship, in turn, isa Shape Object,
which isa Object in the world. Objects are fixed
in place (in both the image and the world) via
location descriptors and might appear as follows:

[ Object
nodetype: basic prototype
objecttype: OneOf {Point, Linear, Shape,
Area}
son: selecton (the objecttype of

Object ThisOne) into
[Point:: a PointObject
Linear:: a LinearObject
Shape:: a ShapeObject
Area:: an AreaObject]
worldlocation: selecton (the objecttype of
Object ThisOne) into
[Point:: a PtLocnDescr
Linear:: a LinLocnDescr
Shape:: a ShLocnDescr
Area:: an ArlLocnDescr]
imagelocation:
//...similar to worldlocation ]

"(the objecttype from Object ThisOne)" is a
description of a slot (objecttype) which resides
in a particular (Object) node; here, the (Object)
node is ThisOne--i.e., the same node the descrip-
tion is in. Given an instantiation of an Object
node with objecttype Point, the selection speci-
fies that the son of the instantiated object must

be a PointObject, and the worldlocation and
imagelocation are both PointLocationDescriptors.

Shape objects are distinquished by one
or more of the properties (not necessarily a
complete 1ist) found in the slots of a prototype
ShapeObject node:

[ ShapeObject
nodetype: basic prototype
isa: an Object with
objecttype = Shape
worldlocation = (the
wrldlocn from
ShapeObject ThisOne)
imagelocation = (the
imlocn from ShapeObject
ThisOne)
son: OneOf {(a Ship), (a Car),
}

//all possible shape objects
imagelocation: a ShapelLocationDescriptor
worldlocation: a ShapelLocationDescriptor
virtualcoords: a CoordinateSystem

//virtual coordinate system for

remaining slots

boundary: a DirectedLineSet
//outline in virtual coordinates
centroid: a Point

orientation: a Number
//orientation of "midline" with
respect to an axis

template: a PointArray
//"silhouette" in virtual coordinates

convexity: - a Number

aspectratio: a Number

length: a Number

width: a Number ]

The description "(the worldlocation from
ShapeObject ThisOne)" in an Object node's
worldlocation slot means that the instantiated
Object will be given the same worldlocation as
the instantiated ShapeObject without copying
information.

A prototype Ship is a specialization of
a ShapeObject. It inherits implicitly all pro-
perties of a ShapeObject but can possess other
distinguishing properties as well--e.g., tonnage,
bow, and stern. A ship prototype could be
defined:

[ Ship
nodetype: specialization prototype
isa: a ShapeObject

shiptype: OneOf {Carrier, Battleship,
Cruiser, Dest oyer,
Tanker, Freimter}
tonnage: a Number

name: a String
bow: a PointObject
stern: a LinearObject ]

If a ship is found in the image, the sketch-
map gets a new node which is an instance of a
Ship node and which has some subset of a Ship's
properties associated with it. This entails




creating a new instance of a ShapeObject and thus
an instance of an Object node. Finally, the
35,000-ton cruiser "U.S.S. Montlantz" located at
21 36'N, 106 47'E might be represented as follows:

[ Ship00l
nodetype: individual
isa: a Ship with

isa = ShapeObject001
shiptype = Cruiser

tonnage = 35000

name = "U.S.S. MontLantz" ]

[ ShapeObject001
nodetype: individual
isa: a ShapeObject with
isa = Object001
son = Ship001
worldlocn = ShLocnDescr0011
imagelocn = ShLocnDescrQ012 ]

[ Object001
nodetype: individual
isa: an Object with
son = ShapeObject001
objecttype = Shape ]

[ ShLocnDescr0011
nodetype: individual
isa: a ShapelLocationDescriptor with
locates = ShapeObject001
coordsystem = CoordSystem0011
centroid = (21 36'N, 106 47'E) 1

[ ShLocnDescr0012
nodetype: individual
isa: a ShapelocationDescriptor with
locates = ShapeFeature001
coordsystem = CoordSystem0012
silhouette = PointSet001 ]

[ ShapeFeature001
//similar to ShapeObject001 ]

Prototype nodes such as ShapeObject and Ship
reside in the model, and must be provided by the
system developer. Individual nodes such
as Ship001 and ShLocnDescr0011 are gene-
rated by the system in response to a query; they
reside in the sketchmap.

Some further prototype node structure for
the example might be:

[ PointObject

nodetype: basic prototype

isa: an Object with
//...similar to ShapeObject

son: OneOf {...}

//all point objects
worldlocation: a PointLocationDescriptor
imagelocation: A PointLocationDescriptor
//distinguishing slots for point cbjects ]

[ LinearObject
//...similar to ShapeObject and
PointObject ]

[ Feature
//...similar to Object ]

[ ShapeFeature
//...similar to ShapeObject ]

[ LocationDescriptor
nodetype: abstract prototype ]

[ ShapeLocationDescriptor
nodetype: specialization prototype
isa: a LocationDescriptor

locates: OneOf {(a ShapeObject),

(a ShapeFeature)} i
coordsystem: a CoordinateSystem |
centroid: a PointSet

//allows for "fuzziness"
orientation: an AngleRange
//...ditto
silhouette: a PointSet ]

...similarly for Point, Linear, and
ArealocationDescriptors |

[ CoordinateSystem

nodetype: abstract prototype
units: a LengthUnitSpecification
scale: a NumberRange

//1length units / system unit
transforms: SetOf {((a Coordinate Transform)
(a Coordinate System)),
st )

[ CoordinateTransform
//two coord systems and a matrix ]

[ PointSet
//choice of representations ]

[ Point2D
//a coord system and two numbers ]

3.4. INNATE PROCEDURAL KNOWLEDGE

The system will have some innate procedural
capabilities to augment the assertional and
pictorial knowledge of the model. As these capa-
bilities expand, the system will become more and
more autonomous. Our immediate goals are to
automate the selection and application of pro-
c?dures and some inferencing about object loca-
tions.

3.4.1. DESCRIBED PROCEDURES

At the highest (strategic) level, control
is embedded in the form of user-written programs.
However, the system will have a powerful proce-
dural substructure that should facilitate the
writing of these programs (Figure 2).

An executive procedure may be attached to
a model node. The executive takes as partial
input an incompletely-specified data object and
returns a more-completely specified one. As
previously described, data objects of a given
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type have a standard form throughout the system.
Thus one deals with executives at the level of
the "operations" of KRL, i.e., what is to be done.
The executives are responsible for how to do it;
they must select and run procedures. To make
these decisions, the executives have access to
descriptions of available resources, the desired
accuracy or immediacy of the result, and the
present state of the model, sketchmap, and image
structures.

image sketchmap world model
data
structure
procedure
description
executive
procedure
) mapping
procedure
Figure 2

The executives must also be able to find out
about the characteristics of procedures they are
to use. For use by executives, the world-image
mapping procedures (and others) must have ‘associ-
ated descriptions containing:

- the slots in the data object which
must be filled for the procedure to
run;

the slots the procedure can fill in;

the cost of the procedure;

- the a priori reliability of the

procedure.

With this scheme,

- executives can be written without
considering the implementation
details of mapping procedures in
great depth,

- mapping procedures need not themselves
determine an appropriate context for
their application,

- descriptions allow a choice between
methods (if several are available)
based on capability, resource re-
quirements, and a priori reliability,

- executives can select alternative
procedures in the event of mapping
procedure failure,

- if the mapping procedures can produce
reliable a priori estimates of their
success, the analytical results of
[Bolles, Taylor] could be extended
to select the procedure which most
economically produces sufficiently
precise answers.

3.4.2. INFERENCES ABOUT LOCATIONS

We expect our model occasionally to include
maps which are more or less accurate metrical
data structures. Such a map can be used to pro-
duce model structure such as:

PacificOcean isa <Area Object>;
OaklandDocks isa <Area Object>;

Here an area object has slots for such properties
as a boundary, an area, etc.

The model will also have assertions such
as:

DockedShips are ADJACENT and
PARALLEL to Docks or DockedShips;

Ships ‘are IN Oceans;

Ship isa <Shape Object>;

To find docked ships using the above infor-
mation, one is invited to search for a particular
shape in the ocean, parallel to docks at some
distance from them related to the width of a ship.
We would like to give the system the capability
of deriving this for itself, and thus being capa-
ble of intelligently instructing a ship-finder
as to location and orientation of possible ships.
We are developing the idea of putting constraints
on an object's location via its location descrip-
tor. The constraints are expressed in terms of
objects whose locations may be known through
maps, such as docks, or objects which may become
known during image analysis, such as ships.

Geometric interpretation of constraint words
such as IN and ADJACENT involves the construction
of new location descriptors from old; intersec-
tion of area or boundaries is useful, as is the
construction of parallel lines, bounding boxes,
etc. Such construction of new or improved loca-
tion descriptors will not be self-actuating, but
the facility will be available to propagate and
deduce knowledge about location whenever the time
seems propitious. This sort of constraint satis-
faction to reduce the range of parameters in a
search seems useful in a variety of contexts,
and it is being implemented as a built-in facility
capable of using a variety of constraints on a
variety of types of objects.
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Introduction

The central problem in image understanding is the
representation and use of all the available sources of
knowledge in the interpretation and description of an image.
The problem of representation is complicated by the
diversity of sources of knowledge. Converting knowledge
into effective algorithms in the presence of error and
uncertainty further complicates the issue. In this paper we
present a specific framework for representation and use of
knowledge which appears to be both sufficient and effecient
for a wide variety of image interpretation tasks.

The framework for image interpretation presented
here is based on the Locus model successfully used in
speech understanding research (Lowerre and Reddy, 1977).
The Locus model is a non-backtracking, non-iterative,
deterministic search technique in which a beam of near-miss
alternatives around the best path are extended to determine
the near-optimal description of the image.

In the following sections we will outline the structure
of the model and discuss the relationship of the present
approach to earlier attempts at image interpretation. A
complete version of this paper, including a detailed example
has been submitted to IJCAI-77 and can be obtained by
writing to the authors. A detailed description of the model
as applied to image interpretation task will be given in Rubin
(1977). A more complete discussion of the strengths and
limitations of the model and its relationship to the other
approaches to knowledge representation and search are
given in Reddy (1977).

The Locus Model

The basic premise underlying the Locus model is that
the problem of image interpretation can be viewed as a
problem of search, and that given a specific knowledge
representation paradigm and a specific signal-to-symbol
transformation paradigm a highly efficient search can be
used to obtain a globally optimal solution satisfying all the
constraints of the world model.

The principal requirement of the Locus model is in the
area of knowledge representation. Most approaches to
image recognition assume the existence (and availability) of
a world model in terms of some internal symbolic
descriplion. The world model usually consists of knowledge
which defines the structure and relationship among objects
that can occur in all the scenes that are interpretable by

the world model. By iteratively redefining higher level
structures in terms of simpler objects one can generate a
hierarchical network (or possibly a relational semantic
network). The particular knowledge representation
paradigm we have adopted in Locus is to attemot to
represent all images that are admissible by the world model
in terms of a graph structure whose nodes are Primitive
Picture Elements (PPEs). A PPE is chosen so that all pixels
belonging to a given PPE class share the same properties in
the feature space (or signal space). Thus a PPE might
sometimes represent an entire object as in the case of sky,
river, or road, or represent a small subpart of an object
such as a segment with similar textural properties. We
therefore assume the existence of a set of PPEs which can
be used to compose any image that is admissible by the
world model. Further we assume that most, if not all, of the
constraints about object structure, size, shape, location, and
orientation are expressibie in ferms of the graph structure
containing only the PPEs. It is obvious that this type of
knowledge representation is likely to be expensive in terms
of space for all except the most trivial problems but it
appears to be what is needed for an efficient solution.
Baker (1974) and Lowerre (1976) show how different types
of knowledge and constraints can be combined into a single
graph structure.

The second requirement of the Locus model is the
availability of a signal-to-symhol transformation technique
by means of which one can estimate the probability that a
given PPE is present at (or around) a pixel location. This
basically requires the availability of a pattern template for
each PPE and a distance metric for matching the unknown
signal with the PPE templates.

In the absence of any constraints, the optimal
assighment of PPEs to pixels can be obtained by selecting
the best PPE label in each pixel neighborhood. However,
given the semantic, syntactic, structural, and segmental
properties of scenes that are acceptable within a micro-
world model, one wishes to choose that assignment of PPEs
to pixels that is both globally optimal and consistent with
the world model.

Given a PPE graph structure representation of the
world model and a signal-to-symbol transformation
technique, the problem of interpreting an unknown image
can be viewed as finding the optimal path through the
graph, i.e, finding a sequence of PPEs which best describe
each of the pixel neighborhoods of the unknown image,
subject to constraints defined by the knowledge sources
represented by the graph.
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Before we can define the search strategy for finding
the optimal path we need to define the term path
probability in a PPE nelwork. Path probability is defined
incrementally in terms of the nodes it traverses and uses
three pieces of information to calculate a probability: the
statistical match of the signal to the symbol; the
probabilities of previous network nodes; and the transition
probabilities of arriving from those previous network nodes.
Formally:

Pij = Ay x AVEF;AGE [M:X Py jrae X T (D

where P;; is the probability of being in network state i at
position j' of the sensed data; A i is the statistical match of
the PPE symbo represented by state i to the signal at
position j; &(d) is the state adjacency function which offsets
the current state (j) to the previous state (j+d(d)) in
direction d; and T,y is the transition probability of
traveling from state k to state i in direction d. For image
processing, the position (j) is an (x, y) vector. Note that the
maximum Kk in the above equation is saved as the best
previous state. This is how each node identifies the best
path to take during the back-trace. Note also that the
probability values are not needed during the back-trace:
they accumulate on the forward pass only. The back-
pointers are calculated on the forward pass using the
probability information, so they reflect all node transitions
to that point. The back-trace uses only the best previous
node for each state as it quickly steps through the network
and selects a path. No search is performed in this pass: it is
pure look-up.

Finding the oplimal path through the graph is a
classical search problem in Artificial Intelligence with many
possible allernative search strategies (Nilsson, 1971). In
this paper we propose and use yet another search strategy
called Locus which appears to be particularly effective in
perceptual problem solving. Locus is a beam-search
heuristic in  which all except a beam of near-miss
alternatives around the best path are pruned from the
search tree at cach pixel (or segmental) decision point, thus
containing the exponential growth without requiring
backtracking and non-deterministic search.

The Locus search proceeds as follows: 1) a forward
pass calculates path probabilities and inter-node
connections, and 2) a back-frace uses the inter-node

. connections to determine the components of the optimal

network path. As the forward pass search progresses
through the nelwork, unpromising alternatives are pruned
and the interconnections along the beam are saved until the
end of the network is reached. At this point, a back-trace
of the connections is made to select a path through the
network. Note that this path is expected to lie in the beam
thal was carved out by the forward pass. By delaying the
decision making process until all of the network nodes have
been examined, Locus oblains the globally optimal path
through the network. This is because the calculation of a
node’s likelihood hinges on all previous nodes that led up to
it. Thus, during the back-trace, each node decision is
guaranteed against degeneration because it’s likelihood is
supported by all nodes before it. This means that the
selection of an object label in one corner of the scene can
affect the labeling in the opposite corner. Consideration of

13

all of the near-miss alternatives removes the need for
backtracking, and thus removes the problem of whether to
search by depth or breadth.

Discussion

The mode! presented in this paper has been used to
interpret Ohlander’s city scene, demonstrating the initial
validity and usefuiness of the model. We plan to use the
model to interpret arbitrary views of downtown Pittsburgh
(a 3-D world), and different satellite views of the
Washinglon, D.C. area (a 2-D world). Representation of the
knowledge about 3-D and 2-D world models in terms PPE
graph structure requires the development of several
preprocessing programs (the PPE graph for Ohlander’s city
scene was generated manually). In this section we will
discuss the relationship of this model to other approaches in
image recognition research, and our present views of the
strenglhs and limitations of this approach.

The graph structure representation proposed here is
a natural outgrowth of work in languages (Aho and Uliman,
1972) and syntax directed patiern recognition (Narasimhan,
1966; Clowes, 1969; and Fu, 1976). The approach
presented in this paper principally differs from the above in
how the network representation is to be used. It rejects
the notion that image recognition is best viewed as a
problem in parsing. Given the error and uncertainty
associated with the decisions, the problem tends to be not
one of deciding whether a given pattern is parsable but
rather one ot search, ie., deciding which of the many
acceplable allernative parses represents the optimal choice.

The view that the problem of image recognition is one
of constraint salistying search has been gaining increasing
acceptance (Waltz, 1975; Tannenbaum and Barrow, 1976;
Hummel, Zucker and Rosenfeld, 1976). This paper also
subscribes to this viewpoint and differs mainly from the
other efforls in the representation of constraintg and the
method of search.

The realiization that one needs to introduce some
measure of the degree of uncertainty into the interpretation
process is reflected in the papers by Fischler and Elschlager
(1973), Feldman and Yakimovsky (1975), and the probablistic
relaxation methods under development at SRI and Maryland.
The method proposed here is able to handle search in the
presence of error and uncertainty in a natural and
straightforward manner provided all knowledge and
constraints are represented in terms of a PPE graph
structure.

Constraint satisfying search in the presence of
uncertainty is also a central problem in other areas of Al in
particular in speech understanding systems research.
Several techniques developed for use in the speech area
such as representation of knowledge sources as cooperating
independent processes (Reddy et al, 1973; Lesser et al,,
1975; Erman et al, 1977), island driven search (Erman et al.,
1977; Woods et al, 1977), and network representations of
knowledge (Baker, 1975; Lowerre, 1976) also appear to be
relevant to other knowledge based systems research,
including vision. The Locus model presented here was first
developed for use in the Harpy connected speech
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recognition system. Though the basic ideas remain the
same, the model had to be revised substantially to make it
useful in image recognition.

The best-first search given by the A% algorithm
(Nilsson, 1971). and the breadth-first graph search of the
dynamic programming algorithms (Bellman, 1962) provide
alternative approaches to optimal graph search problems.
The beari-search technique of the Locus model provides a
minimal effort near-optimal solution and appears to be
effective in cases where the evaluation function is a
function of an external signal source and where a large
number of decisions are related to each other in that they
are all attempting to provide alternative interpretations of
the same signal segment.

A significant feature of the Locus model of search is
its linearity. Because Locus prunes all but a narrow beam
of alternatives, its search time is linear with respect to the
size of the input signal and is essentially independent of the
symbol space size. Thus, Locus searching controls the
combinatarial explosion that occurs in most graph searching
techniques. Note, however, thal the size of the beam
expands and contracts during the search as the connectivity
between symbols in the graph increases and with the
degree of uncertainty of the decisions.

The order of search in Locus is a subtle issue thal
appears to be a problem but really isn’t. When using Locus
in speech understanding, there is one independent dimension
of time which can be used to order the search. In image
processing with static pictures, there are two dimensions, so
a raster scan is used. This might appear to cause continuity
problems especially at the end of a scan line. However,
Locus requires only the local context for a point and it
propagates the global contex! regardiess of seavch order.
Thus, any search pattern can be used as long as it is
reversed on the back-trace. Note also that the raster scan
has the advantage of allowing the use of context for
horizantally, vertically, and diagonally adjacent states.

A main concern with the finite state networks is that
not all relational constraints are easily representable within
that framework. We have not found this to be a problem in
the 3-D and 2-D worlds we have considered so far, although
the representations tend to be expensive in space (memory)
required. We expect lo use a post-pass to apply
constraints that are not easily incorporated into the
network.

Conclusion

This paper provides a framework for knowledge
representation and search for image recognition tasks,
leading to an easily implementable total systems framework
within which one can explore the relative merits of different
types of knowledge. One slill has to decide what knowledge
is available, how fo acquire and define it, how to select an
adequate set of primitive picture elements (PPE) for a given
task, and how to malch symbols (PPEs) to the signal.
However, each of these sublasks look much more
manageable to us than the original image interpretation task.
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Abstract

The extraction of stereo disparity information from two
Images depends upon establishing a correspondence between
them. This article analyzes the nature of the correspondence
computation, and derives a cooperative algorithm that
Implements it. We show that this algorithm successfully extracts
Information from random-dot stereograms, and its implications
for the psychophysics and neurophysiology of the visual system
are briefly discussed.

Introduction

Perhaps one of the most striking differences between a
brain and today's computers is the amount of wiring. In a
digital computer, the ratio of connexions to components is about
three, whereas for the mammalian cortex it lies between 10 and
10,000 (1).

Although this fact points to a clear structural difference
between the two, it is important to realise that this distinction is
not fundamental to the nature of the information processing
that each accomplishes, merely to the particulars of how it does
it. In Chomsky's terms (2), it affects theories of performance
but not theories of competence, because the nature of a
computation that is carried out by a machine or a nervous
system depends only on the problem to be solved, not on the
available hardware (3). Nevertheless one can expect a nervous
system and a digital computer to use different types of

algorithm, even when performing the same underlying
computation. Algorithms with a parallel structure, requiring
many simultaneous local operations on large data arrays, are
expensive for today's computers but probably well-suited to the
highly interactive organization of nervous systems.

The class of parallel algorithms includes an interesting and
not precisely definable subclass which we may call cooperative
algorithms (3). Such algorithms operate on many “input”
elements and reach a global organisation via local, interactive
constraints. The term “coopeiative” refers to the way in which
local operations appear to cooperate in forming global order in
a well-regulated manner. Cooperative phenomena are well-
known in physics (4, 5), and it has recently been proposed that
they may play an important role in biological systems as well (4,
6,7, 8,9,10). One of the earliest suggestions along these lines is
due to Julesz (ll), who maintains that stereoscopic fusion Is a
cooperative process. His spring and dipoles model represents a
suggestive metaphor for this idea. Besides its biological
relevance, the extraction of stereoscopic information is an
important and yet unsolved problem in visual information

processing (12). For this reason -- and also as a case-in-point -
it seems interesting to describe a cooperative algorithm for this
computation.

In this article, we shall (a) analyse the computational
structure of the stereo-disparity problem, stating the goal of the
computation and characterising the associated local constraints;
(b) describe a cooperative algorithm that implements this
computation; and (c) exhibit it« performance on random-dot
stereograms. Although the problem addressed here is not
directly related to the question of how the brain extracts
disparity information, we shall briefly mention some questions
and implications for psychophysics and neurophysiology.

L. There is ambiguity in the correspondence between the two
retinal projections. In this figure, each of the four points in
one eye's view could match any of the four projections in the
other eye's view. Of the 16 possible matchings only four are
correct (filled circles), while the remaining 12 are “false targets”
(open circles). It is assumed here that the targets (filled squares)
correspond to "matchable” descriptive elements obtained from
the left and right images. Without further constraints based on
global considerations, such ambiguities cannot be resolved.
Redrawn after Julesz (ref. 12 figure 45-1).
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Computational Structure of the Stereo-
disparity Problem

Because of the way our eyes are positioned and controlled,
our brains usually receive similar images of a scene taken from
two nearby points at the same horizontal level. If two ob jects
are separated in depth from the viewer, the relative positions of
their images will differ in the two eyes. Our brains are capable
of measuring this disparity, and using it to estimate depth.

Three steps are involved in measuring stereo disparity:
(81) a particular location on a surface in the scene must be
selected from one image; (S2) that same location must be
identified in the other image; and (S 3) the disparity in the two
corresponding image points must be measured.

If one could identify a location beyond doubt in the two
images, for example by illuminating it with a spot of light, steps
S1and 52 could be avoided and the problem would be easy. In
practise one cannot do this (see figure 1), and the difficult part
of the computation is solving the correspondence problem.
Julesz found that we are able to interpret random-dot
stereograms, which are stereo pairs that consist of random dots
when viewed monocularly, but which fuse when viewed
stereoscopically to yield patterns separated in depth. This might
be thought surprising because when one tries to set up a
correspondence between two arrays of random dots, false targets

arise in profusion (see figure I). Yet we are able to determine
the correct correspondence. We need no other cues.

In order to formulate the correspondence computation
precisely, we have to examine its basis in the physical world.
Two constraints of importance may be identified (13): (CI) A
given point on a physical surface has a unique position in space
at any one time; (C2) Matter is cohesive, it is separated into
ob jects, and the surfaces of objects are generally smooth
compared with their distance from the viewer.

These constraints apply lo locations on a physical surface.
Therefore when we translate them into conditions on a
computation we must ensure that the items to which they apply
there are in (I-1) correspondence with well-defined locations on a
physical surface. To do this. one must use surface markings,
normal surface discontinuities, shadows etc., which in turn
means using predicates that correspond to changes in intensity.
One solution is to obtain a primitive description (like the
primal sketch (15)) of the intensity changes present in each
image, and then to match these descriptions. Line and edge
segments, blobs, termination points, and tokens obtained from
these by grouping, usually correspond to items that have a
physical existence on a surface. ;

The stereo problem may thus be reduced to that of
matching two primitive descriptions, one from each eye. One
can think of the elements of these descriptions as carrying only
position information, like the black squares in a random-dot
steredgram, although in practise there will exist rules about
which matches between descriptive elements are possible, and
which are not. The two physical constraints C! and C2 can
now be translated into two rules for ow the left and right
descriptions are combined:

(R1) Uniqueness. Each item from each image may be assigned
at most one disparity value. This condition relies on the
assumption that an item corresponds to something that has a
unique physical position.

(R2) Continuity. Disparity varies smoothly almost everywhere.
This condition is a consequence of the cohesiveness of matter,
and it states that only a small fraction of the area of an image

is composed of boundaries that are discontinuous in depth.

It is important to stress that in real life, Rl cannot be
applied simply to grey-level points in an image. The simplest
counter-example is that of a goldfish swimming in a bowl,
because many points in the image receive contributions from
the bowl and from the goldfish. Here, and in general, a grey-
level point is in only implicit correspondence with a physical
location, and it is therefore impossible to ensure that grey-level
points in the two images correspond to exactly the same physical
position. Sharp changes in intensity are usually due either to
the goldfish, or to the bowl, or to a reflexion, and therefore
define a single physical position precisely.
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2. Figure 2a shows the explicit structure of the two rules R/ and
R2 for the case of a one-dimensional image, and it also
represents the structure of  network for implementing the
algorithm described by equation 2. Solid lines represent
“inhibitory" interactions, and dotted lines represent “excitatory”
ones. 2b gives the local structure at each nr & of the network
2a. This algorithm may be extended to two-dimensional
images, in which case each node in the corresponding network
has the local structure shown in 2c. Such a network was used to
solve the stereograms exhibited in figures 3 - 6.

L ]

A Cooperative Algorithm

By constructing an explicit representation of the two rules,
we can derive a cooperative algorithm for the computation.
Figure 2a exhibits their geometry in the simple case of a one-
dimensional image. Lx and Ly represent the positions of
descriptive elements on the l:ft and right images. The thick
vertical and horizontal lines represent lines of sight from the
left and right eyes, and their intersection points correspond to
possible disparity values. The dotted diagonal lines connect
points of constant disparity.

The uniqueness rule R1 states that only one disparity value




may be assigned to each descriptive element. If we now think
of the lines in figure 2a as a network, with a node at each
intersection, this means that only one node may be switched on
along each horizontal or vertical line.

The continuity rule R2 states that disparity values vary
smoothly almost everywhere. That is, solutions tend to spread
along the dotted diagonals.

If we now place a “cell” at each node (figure 2b), and
connect it so that it inhibits cells along the thick lines in the
figure, and excites cells along the dotted lines, then provided
the parameters are appropriate the stable states of such a
network will be precisely those in which the two rules are
obeyed. It remains only to show that such a network will
converge to a stable state, and we were able to carry out a
combinatorial analysis (as in refs. 9 & 15) which established its
convergence for random-dot stereograms (16).

This idea may be extended to two-dimensional images
simply by making the local excitatory neighbourhood two-
dimensional. The structure of each node in the network for
two-dimensional images is shown in figure 2c.

A simple form of the resulting algorithm (3) is given by
the following set of difference equations:

C" 'V = g{Z(C™) + €™ (1)
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where C represents the state of the node or cell at position

X
(x, y) with disparity d at iteration n, Z is the linear operator
that embeds the local constraints (S and O are the circular and
thick line neighborhoods of the cell xyd in figure 2c), and ¢ is
the "inhibition™ constant. ¢ is a sigmoid function with range [0,

n+l
1. The state C of the corresponding node at time (n+/) is

thus determined by a nonlinear operator on the output of a
linear transformation of the s:ates of neighbouring cells at time
n.

The desired final state of the computation is clearly a
fixed point of this algorithm, and moreover any state that is
inconsistent with the two rules is not a stable fixed point. Qur
combinatorial analysis of this algorithm shows that, when o is a
simple threshold function, the process converges for a rather
wide range of parameter values (1€). The specific form of the
operator is apparently not very critical.

Non-iterative local operations cannot solve the stereo
problem in a satisfactory way (!1). Recurrence and non-linearity
are necessary to create a truly cooperative algorithm that cannot
be decomposed into the superposition of local operations (17).
General results concerning such algorithms seem to be rather
difficult to obtain, although we believe that one can usually
establish convergence in probability for specific forms of them.

Examples of Applying the Algorithm
Random-dot stereograms offer an ideal input for testing
the performance of the algorithm, since they enable one to
bypass the costly and delicate process of transforming the
intensity array received by each eye into a primitive description
(14). When we ourselves view a random-dot stereogram, we
probably compute a description couched in terms of edges
rather than squares, whereas the inputs to our algorithm are the
positions of the black squares. Figures 3, 4, 5 and 6 show some
examples in which the iterative algorithm successfully solves the
correspondence problem, thus allowing disparity values to be

3. This and the following figures show the results of applying
the algorithm defined by 2quation 2 to two random-dot
stereograms. The initial state of the network C is defined by
the input such that a node takes the value | if it occurs at the
intersection of a | in the left and right eyes (see figure 2), and it
has value 0 otherwise. The network iterates on this initial state,
and the parameters used here, as suggested by the combinatorial
analysis, were

9 -30,¢=20and M =5 where 8 is the threshold and M is the
diameter of the “excitatory” neighborhood illustrated in figure
2c. The stereograms themselves are labelled LEFT and
RIGHT, the initial state of the network as 0, and the state after
n iterations is marked as such. To understand how the figures
represent states of the network, imagine looking at it from
above. The different disparity layers in the network lie in
parallel planes spread out horizontally, so that the viewer is
looking down through them. In each plane, some nodes are on
and some are off. Each of the seven layers in the network has
been assigned a different gray level, so that a node that is
switched on in the top layer (corresponding to a disparity of «3
pixels) contributes a dark point to the image, and one that is
switched on in the lowest layer (disparity = -3) contributes a
lighter point. Initially (iteration 0) the the network is
disorganized, but in the final state, stable order has been
achieved (iteration 14), and the inverted wedding-cake structure
has been found. The density of this stereogram is 50%
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4. The algorithm of equation 2, with parameter values given in
the legend to figure 3, is capable of solving random-dot
stereograms with densities from 507 down to less than 10%. For
this and smaller densities, the algorithm converges increasingly
slowly. If a simple homeostatic mechanism is allowed to control
the threshold @ as a function of the average activity (number of
“on” cells) at each iteration (compare ref. 15), the algorithm can

solve stereograms whose density is very low. In this example,
the density is 5% and the central square has a disparity of +2
relative to the background. The algorithm "fills in" those areas
where no dots are present, but it takes several more iterations to
arrive near the solution than in cases where the density is 507.
When we look at a sparse stereogram, we perceive the shapes in
it as cleaner than those found by the algorithm. This seems to
be due to sub jective contours that arise between dots that lie on
shape boundaries.
R

assigned to items in each image. Presently, its technical
applications are limited only by the preprocessing problem.

This algorithm can of course be realised by various
mechanisms, but parallel, recurrent, nonlinear interactions, both
excitatory and inhibitory, seem the most natural. The
dif ference equations set out above would then represent an
approximation to the differential equations that describe the
dynamics of the network.

Implications for Biology
We have hitherto refrained from discussing the biological
problem of how stereopsis is achieved in the mammalian brain.
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Our analyses of the computation, and of the cooperative
algorithm that implements it, raise several precise questions for
psychophysics and physiglogy An important preliminary point
concerns the relative importance of neural fusion and of eye-
movements for stereopsis. The underlying question is, are there
many disparity "layers" (as our algorithm requires), or are there
just three “pools” (18) -- crossed, uncrossed and zero disparity
Most physiologists and psychologists seem to accept the
existence of numerous, sharply tuned binocular “disparity
detectors”, whose peak -sensitivities cover a wide range of
disparity values (19, 20). We do not feel that the available
evidence is decisive (21), but an answer is critical to the
biological relevance of our analysis. If for example there were
only three pools or layers with a narrow range of disparity
sensitivities, the problem of false targets is virtually removed,
but at the expense of having to pass the convergence plane of
the eyes across a surface in order to achieve fusion
Psychophysical experiments are presently under way to gain
some insight into this problem, but we believe that only
physiology is capable of providing a clear-cut answer.

5. The disparity boundaries found by the algorithm do not
depend on.their shapes. In figures a, b and ¢ we give examples
of a circle, an octagon (ndtice how well the difference between
them is preserved) and a triangle. The fourth example (d)
shows a square in which the correlation is 100% at the boundary,
but diminishes to 0% in the center. When one views this
stereogram, the center appears to shimmer in a peculiar way. In
the network, the center is unstable.




6. The width of the minimal resolvable area increases with
disparity. In all four stereograms the pattern is the same, and
consists of five circles with diameters 3,5, 7, 9 and 13 dots. The
disparity values exhibited here are 41, +2, +3 and +6, and for
each pattern, we show the state of network after 10 iterations.
As far as the network is concerned, the last pair (disparity +6) is
uncorrelated, since only disparities from -3 to +3 are present in
our implementation. After 10 iterations, information about the
lack of correlation is preserved in the two largest areas.

If this preliminary auestion is settled in favour of a "multi-
layer” cooperative algorithm, there are several obvious
implications of the network (figure 2) at the physiological level:
(a) the existence of many sharply tuned disparity units, that are
rather insensitive to the nature of the descriptive element to
which they may refer; (b) their organisation into disparity
layers (or stripes or columns); (c) the presence of reciprocal
excitation within each layer; (d) the presence of reciprocal
inhibition between layers along the two lines of sight. Ideally,
the inhibition should exhibit the characteristic "orthogonal”
geometry of the thick lines in figure 2, but slight deviations
may be permissible (16).

At the psychophysical level, several experiments (under
stabilized image conditions)could provide critical evidence for
or against the network: (a) results about the size of Panum's
area and the number of disparity "layers”; (b) results about
“pulling” effects in stereopsis (20); (c) results about the
relationship between disparity and the minimum fusable
pattern size (see fig. 6).
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Discussion

Our algorithm performs a computation that finds a
correspondence function between two descriptions, sub ject to the
two constraints of uniqueness and continuity. More generally, if
one has a situation where "allowable™ solutions are those that
satisfy certain local constraints, a cooperative algorithm can
often be constructed so as to find the "nearest” allowable state to
an initial one. Provided that the constraints are local, use of a
cooperative algorithm allows the representation of global order,
to which the algorithm converges, to remain implicit in the
netwerk's structure.

The interesting difference between this stereo algorithm
and standard correlation techniques is that one is not required
to specify minimum or maximum correlation areas, to which the
analysis is subsequently restricted. Previous attempts at
implementing automatic stereocomparison through local
correlation measurement have failed in part because no single
neighbourhood size is always correct (12). The absence of a
“characteristic scale” is one of the most interesting properties of
this algorithm, and it is a central feature of several cooperative
phenomena (22). We conjecture that the matching operation
implemented by the algorithm represents in some sense a
generalised form of correlation, subject to the a priori
requirements imposed by the constraints. The idea is easily
generalisable to different constraints and to other forms of
equations (1) or (2), and it is technically quite appealing.

Cooperative algorithms may have many useful
applications, (for example to best-match associative retrieval
problems (15)), but their relevance to early processing of
information by the brain temains an open question (23).
Although a range of early visual processing problems might
yield to a cooperative approach (*filling-in® phenomena,
sub jective contours (24), grouping, figural reinforcement,
texture “fields”, the correspondence problem for motion), it is
important to emphasize that in problems of biological
information processing, the first important and difficult task is
to formulate the underlying ‘computation precisely (3). After
that, one can study good algorithms for it. In any case, we feel
that an experimental answer to the question of whether depth
perception is actually a cooperative process is a critical
prerequisite to further attempts at analysing other perceptual
processes in terms of similar algorithms.
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Abstract

Parametric correspondence is a
technique for matching images to a three
dimensional symbolic reference map. An

analytic camera model is used to predict
the location and appearance of landmarks
in the image, generating a projection for
an assumed viewpoint. Correspondence is
achieved by adjusting the parameters of
the camera model until the appearances of
the landmarks optimally match a symbolic
description extracted from the image.

The matching of image and map features
is performed rapidly by a new technique,
called "chamfer matching", that compares
the shapes of two collections of shape
fragments, at a cost proportional to
linear dimension, rather than area.
These two techniques permit the matching
of spatially extensive features on the
basis of shape, which reduces the risk of
ambiguous matches and the dependence on

viewing conditions inherent in
conventional image-based correlation
matching.

Introduction

Many military tasks require the
ability to put a sensed image into
correspondence with a reference image or
map. Examples include vehicle guidance
(navigation and terminal homing), photo
interpretation (change detection and

monitoring) s and cartography (map
updating). The conventional approach is
to determine a 1large number of points of
correspondence by correlating small

patches of the reference image with the
sensed image. A polynomial interpolation
is then used to estimate correspondence
for arbitrary intermediate points
[Bernstein]. This approach is
computationally expensive and limited to
cases where the reference and sensed
images were obtained under similar viewing
conditions. In particular, it cannot
match images obtained from radically

different viewpoints, sensors, or seasonal
or climatic conditions, and it cannot
match images against symbolic maps.

Parametric correspondence matches
images to a symbolic reference map, rather
than a reference image. The map contains

a compact three-dimensional representation
of the shape of major landmarks, such as
cocastlines, buildings, and roads. An
analytic camera model is used to predict
the location and appearance of landmarks
in the image, generating a projection for

an assumed viewpoint. Correspondence is
achieved by adjusting the parameters of
the camera model (i.e. the assumed

viewpoint) until the appearances of the
landmarks optimally match a symbolic
description extracted from the image.

The success of this approach requires
the ability to rapidly match predicted and
sensed appearances after each projection.
The matching of image and map features is
performed by a new technique, called
"chamfer matching", that compares the
shapes of two collections of curve
fragments at a cost proportional to linear
dimension, rather than area.

In principle, this apprecach should be
superior, since it exploits more knowledge
of the invariant three dimensional
structure of the world and of the imaging
process. At a practical level, this
permits matching of spatially extensive
features on the basis of shape, which
reduces the risk of ambiguous matches and
dependence on viewing conditions.

Chamfer Matching

Point landmarks, such as intersections
or promontories, are represented in the
map with their associated three
dimensional world coordinates. Linear
landmarks, such as roads or coastlines,
are represented as curve fragments with
associated ordered lists of world
coordinates. Volumetric structures, such
as buildings or bridges, are represented
as wire-frame models.




From a knowledge of the expected
viewpoint, a prediction of the image can
be made by projecting world coordinates
into corresponding image coordinates,
suppressing hidden lines. The problem in
matching is to determine how well the
predicted features correspond with image
features, such as edges and lines.

The first step is to extract image
features by applying edge and line
operators or tracing boundaries. Edge
fragment 1linking [Nevatia, Perkins] or
relaxation enhancement [Zucker, Barrow] is
optional. The net result is a feature
array each element of which records
whether or not a 1line fragment passes
through it. This process preserves shape
information and discards greyscale
information, which is less invariant.

To correiate the extracted feature
array directly with the predicted feature
array would encounter several problems:

The correlation peak for two identical
curves is very sharp and therefore
intolerant of slight misalignment or
distortions [Andrus]: A sharply peaked
correlation surface is an inappropriate

optimization criterion because it provides
little indication of closeness to the true
match, nor of the proper direction in
which to proceed: Computational cost is
heavy with large feature arrays.

A more robust measure of similarity
between the two sets of feature points is
the sum of the Jdistances between each
predicted feature point and the nearest
image point. This can be computed
efficiently by transforming the image
feature array into an array of numbers
representing distance to the nearest image
feature point. The similarity measure is
then easily computed by stepping through
the list of predicted features and simply
summing the distance array values at the
predicted locations. The distance values

can be determined by a process known as
"chamfering", in two passes through the
image feature array [Munson, Rosenfeld].

Note that this determination is made only
once, after image feature extraction.

Chamfer matching provides an efficient

way of computing the integral distance
(i.e. area), or integral  squared
distance, between two curve fragments, two
commonly used measures of shape
similarity.
Parametric Correspondence

Parametric  correspondence puts an
image 1into correspondence with a three

dimensional reference map by determining
the parameters of an analytic camera model
(3 position and 3 orientation parameters).
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The traditional method of calibrating
the camera model takes place in two
stages: first, a number of known landmarks
are independently located in the image,
and second, the camera parameters are
computed from the pairs of corresponding
world and image locations, by solving an
over-constrained set of equations [Sobel,
Quam, Hannah].

The failings of the traditional method
stem from the first stage. The landmarks
are found individually, using only very

local context (e.g. a small patch of
surrounding image) and with no mutual
constraints. Thus 1local false matches

commonly occur. The restriction to small
features is mandated by the high cost of
area correlation, and by the fact that
large image features correlate poorly over
small changes in viewpoint.

Parametric correspondence overcomes
these failings by integrating the
landmark-matching and camera-calibration

stages. It operates by hill-climbing on
the camera parameters. A transformation
matrix is constructed for each set of

parameters considered, and it is used to
project landmark descriptions from the map
onto  the image at a particular
translation, rotation, scale and
perspective. A similarity score is
computed with chamfer matching and used to
update parameter values. Initial
parameter values are estimated from
navigational data.

Integrating the two stages allows the
simultaneous matching of all landmarks in
their correct spatial relationships.
Viewpoint problems with extended features
are avoided because features are precisely
projected by the camera model prior to
matching. Parametric correspondence has
the same  advantages as rubber-sheet
template matching [Fischler, Widrow] in
that it obtains the best embedding of a
map in an image, but avoids the
combinatorics of trying arbitrary
distortions by only considering those
corresponding to some possible viewpoint.

An Example

The following example illustrates the

major concepts in chamfer matching and
parametric correspondence. A sensed
image (Figure 1) was input along with

manually derived initial estimates of the
camera parameters. A reference map of the
coastline was obtained, using a digitizing
tablet to encode 'coordinates of a set of

81 sample points on a USGS map.
Elevations for the points were entered
manually. Figure 2 is an orthographic

projection of this three dimensional map.
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A simple edge follower traced the high
contrast boundary of the harbor, producing
the edge picture shown in Figure 3. The
chamfering algorithm was applied to this
edge array to obtain a distance array.
Figure 4 depicts this distance array;
distance is encoded by brightness with
maximum brightness corresponding to zero
distance from an edge point.

Using the initial camera parameter
estimates, the map was projected onto the
sensed image (Figure 5). The average
distance between projected points and the
nearest edge point, as determined by
chamfer matching, was 25.8 pixels.

A straightforward optimization
algorithm adjusted the camera parameters,
to minimize the average distance.

Figures 6 and 7 show an intermediate state
and the final state, in which the average
distance has been reduced to 0.8 pixels.
This result, obtained with 51 sample
points, compares favorably with a 1.1
pixel average distance for 19 sample
points obtained using conventional image
chip correlation followed by camera
calibration. The curves in Figure 8
characterize the local behavior of this
minimum, showing how average distance
varies with variation of each parameter
from its optimal value.

Discussion

We have presented a scheme for
establishing correspondence between an
image and a reference map that integrates
the processes of landmark matching and
camera calibration. The potential
advantazes of this approach stem from 1)
matching shape, rather than brightness, 2)
matching spatially extensive features,
rather tnan small patches of image, 3)
matching simultaneously to all features,
rather than searching the combinatorial
space of alternative 1local matches, 4)
using a compact three dimensional model,
rather than many two dimensional
templates.

Shape has proved to be much easier to
model and predict than brightness. Shape
18 a relatively invariant geometric
property whose appearance from arbitrary
viewpoints can be precisely predicted by
the camera model. This eliminates the
need for multiple descriptions,
corresponding to different viewine
conditions, and overcomes difficulties of
matching large features over small changes
of viewpoint.

The ability to treat the entirety of
the relevant portion of the reference map
as a single extensive feature reduces
significantly the ~isl.  of ambiguous

matches, and avoids the combinatorial
complexity of finding the optimal
embedding of multiple local features.

A number of obstacles have been
encountered in reducing the above ideas to
practice. The distance metric used in
chamfer matching provides a smooth,
monotonic measure near the correct
correspondence, and nicely interpolates
over gaps in curves. However, scores can
be unreliable when image and reference are
badly out of alignment. In particular,
discrimination is poor in textured areas,
aliasing can occur with parallel linear
features, a single isolated image feature
can support multiple reference features.

The main problem is that edge position
is not a distinguishing feature, and
consequently many alternative matches
receive equal weight. One way of
overcoming this problem, therefore, is to
use more descriptive features: brightness
discontinuities can be classified, for
example, by orientation, by edge or line,
and by 1local spatial context (texture
versus isolated boundary). Each type of
feature would be separately chamfered and
map features would be matched in the
appropriate array. Similarly, features
at a much higher level could be used, such
as promontory or bay, area features having
particular internal textures or
structures, and even specific landmarks,
such as "the top of the Transamerica
pyramid". Ideally, with a few highly
differentiated features distributed widely
over the image the parametric
correspondence process would be able to
home in directly on the solution
regardless of initial conditions.

Another dimension for possible
improvement is the chamfering process

itself. Determining for each point of
the array a weighted sum of distances to
many features (e.g. a convolution with

the feature array), instead of the
distance to the nearest feature, would
provide more immunity from isolated noise
points. Alternatively, propagating the
coordinates of the nearest point instead
of merely the distance to it, it becomes
possible to use characteristics of

features, such as local slope or
curvature, in evaluating the goodness of
match. It also makes possible a more

directed search, since corresponding pairs
of points are now known, an improved set
of parameter estimates can be analytically
determined.

Chamfer matching and  parametric
correspondence are separable techniques.
Conceptually, parametric correspondence
can be performed by re-projecting image
chips and evaluating the match with
However, the cost of

correlation.




projection and matching grows with the
square of the template size: The cost for
chamfer matching grows linearly with the
number of feature points. Chamfer
matching is an alternative to other shape
matching techniques, such as chain-code
correlation [(Freeman], Fourier matching
{Zahn], and graph matching ([e.g. Davis].
Also, the smoothing obtained by
transforming two edge arrays to distance
arrays via chamfering can be used to
improve the robustness of conventional
area-based edge correlation.

Parametric correspondence, in its most
general form, is a technique for matching
two parametrically related representations

of the same geometric structure. The
representations can be two- or three-
dimensional, iconic or symbolic; the
parametric relation can be perspective
pro jection, a simple similarity

transformation, a polynomial warp, and so
forth. This view is similar to rubber-
sheet template matching as conceived by
Fischler and Widrow [Fischler, Widrow].
The feasibility of the approach in any
application, as Widrow points out, depends
on efficient algorithms for "pattern
stretching, hypothesis testing, and
pattern memory", corresponding to our
camera model, chamfer matching, and thr-ze
dimensional map.

As an illustration of its versatility,
the technique can be used with a known
camers location to find a known object
whose position and orientation are known
only approximately. In this case, the
object s position and orientation are the
parameters; the object is translated and
rotated until its projection best matches
the image data. Such an application has
a more iconic flavor, as advocated by
Shepard [Shepard], and is more integrated
than the traditional feature extraction
and graph matching approach [Roberts, Falk
and Grape].

As a final consideration, the approach

is amenable to efficient hardware
implementation. There already exists
commercially available hardware for
generating parametrically specified

penspective views of wire frame models at
video rates, complete with hidden line
suppression. The chamfering process
itself requires only two passes through an
array by a local operator, and mat:zh
scoring requires only summing table
lookups in the resulting distance array.

Conclusion

Iconic matching techniques, such as
correlation, are known for efficiency and
precision obtained by exploiting all
available pictorial information,
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especially geometry. However, they are
overly sensitive to changes in viewing
conditions and cannot make use of non-
pictorial information. Symbolic matching
techniques, on the other hand, are more
robust because they rely on invariant
abstractions, but are less precise and
less efficient in handling geometrical
relationships. Their applicability in
real scenes is limited by the difficulty
of reliably extracting the invariant
description. The techniques we have put
forward offer a way of combining the best
features of iconic and symbolic
approaches.

References

Andrus, J.F., Campbell, C.W. and Jayroe,
R-R.; "A Digital Image
Registration Method Using Boundary
Maps", IEEE Trans. Comp., Sept.
1975, p. 935-939.

Barrow, H.G., "Interactive Aids for
Cartography and Photo
Interpretation", Interim Report of
ARPA  Project  DAAG29-76-C-0057,
Artificial Intelligence Center,
Stanford Research Institute, Menlc
Park, Calfornia, Dec. 1976.

Bernstein, R., "Digital Image Processing
of Earth Observation Sensor Data",
IBM Journal of Research and
Development, Vol. 20, No. 1
1976.

Davis, L., "Shape Matching Using
Relaxation Techniques"™, TR-480,
Computer Science Dept., University
of Maryland, Sept. 1976.

Falk, G., "Interpretation of Imperfect
Line Data as a Three Dimensional
Scene," Artificial Intellgence,
Vol. 3, 1972, p.101-144,

Feder, J. and Freeman, H., "Segment
Fitting of Curves in Pattern
Analysis Using Chain Correlation",
AD619525, March 1965.

Fischler, M. and Elschlager, R., "The
Representation and Matching of
Pictorial Structures", IEEE Trans.
Comp., no. 22, 1973, p.67-92.

Grape, G.R., "Model Based (Intermediate
Level) Computer Vision", Stanford
AI Memo AIM-201, May 1973, Ph.D.
Thesis.

Hannah, M.J., "Computer Matching of Areas
in Stereoc Images", Stanford Al
Memo AIM-239, July 1974, Ph.D.
Thesis.

—




Munson,

J., Internal memo, Artificial
Intelligence Center, Stanford
Research Institute, Menlo Park,
California, Dec. 1973.

Perkins, W.P., "Multi-level Vision

Quam,

Recognition System", Proc. Third
IJCPR, Nov. 1976, p.739-T44.

L.H., "Computer Comparison of
Pictures", Stanford AI Project
Memo  AIM-144, May 1971, Ph.D.
Thesis.

Roberts, L.G., "Machine Perception of

Three-dimensional Objects", in:

Tippet, J.T., et al. (Eds.),

"Optical and Electro-Optical
Information Processing", MIT
Press, 1965, p.159-197.

Rosenfeld, A. and Pflatz, J.L., "Distance

Functions on Digital Pictures",
Pattern Recognition, Vol. 1 No.
1, July 1968, p.33-62.

Shepard, R.N. and Metzler, J., "Mental

Sobel,

Widrow,

Zahn,

Zucker,

Rotation of Three-Dimensional
0Ob jects", Science, 1971, p.701-
703.

| T "On Calibrating Computer
Controlled Cameras for Perceiving
3-D Scenes", Artificial

Intelligence, Vol. 5, 1974,
p.185-198.

B., "The ‘Rubber-Mask’ Technique",
Pattern = Recognition, Vol. 54
1973, p.175-211.

€ and Roskies, R., "Fourier

Descriptors for Plane Closed
Curves", IEEE Trans. Comp., no.
21, 1972, p.269-281.

S., Hummel, R. and Rosenfeld, A.,
"An Application of Relaxation
Labeling to Curve and Line
Enhancement", IEEE Trans. Comp.,
no. 25, 1976.

25




Figure 1. An aerial image of a section Figure 3. The traced boundary of the
of coastline. coastline.

Figure 2. A seL ol sample points tak.n Figure 4. The distance array produced by
from a USGS map. chamfering the boundary.
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Figure 5.

Figure 6.

Initial projection of map
points onto the image.

Projection of map points onto

the image after some
ad justment of camera
parameters.
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Figure 7.

Figure 8.

Projection of map points onto
the image after optimization
of camera parameters.

Behavior of average distance
score with variation of the
six camera parameters from
their optimal values.
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Summary

This paper describes research toward the
development of symbolic registration and change detection
techniques directed toward the problem of the comparison
of pairs of different images of the same scene to generate
descriptions of the changes in the scene. Unlike earlier
work in the change analysis area, all the matching and
change analysis is performed at a symbolic level rather than
a signal level. To facilitate this symbolic analysis over a
wide varicty of images, advances in several other areas of
image analysis are also required. These areas are:
segmentation techniques to generate the basic units used in
the symbolic analysis, feature analysis to generate the
symbolic description of the regions and image, use of
knowledge to guide the segmentation and symbolic
registration procedures, and lastly change analysis itself.
We applied this procedure on several diverse scenes (house,
cityscape, satellite images, aerial images, and radar images),
each of which included a task description and a predefined
set of knowledge elements, and have shown how several
different tasks can be performed with a general change
analysis system.

Summary of the Tasks

The scenes which we analyze (see Price, 1976) for a
more complete descriplion) are: a simple house scene, a
cityscape scene, a LANDSGAT (satellite) scene showing snow
cover changes, a SLR (side looking radar) scene, an aerial
rural scene, and an aerial urban or industrial scene. The
first two scenes have three inilial spectral inputs, the
LANDSAT scene has four, and the other three have only one
(intensity of radar signal or visible light). The tasks are:
Perform simple symbolic registration for the house scene.
Perform symbolic registration in a more textured scene with
changes in the relative posilion of objects using the
cityscape scene. Perform the analysis of a different
spectral domain (radar) and symbolic registration with the
SLR scene. Perform symbolic registration in the presence of
rotations in the aerial rural scene. Perform symbolic
registration and the analysis of the area of snow cover in
the LANDSAT snow cover scene. And, finally, using
knowledge guided segmentation, determine the change in the
number of certain objects in the urban or industrial scene.

Segmantation

The first step towards the generation of a symbolic
description of an image is to divide continuous image signal
into discrete components sharing similar properties. Our
work on segmentation is an extension of the histogram
guided  region  splitling  technique  developed by
Chlander(1975). This method was originally developed for
use on color images. Basically the procedure splits a region
into subregions thresholding one of the spectral inputs. The
threshold is selected by the analysis of the histograms of

the values for all pixels in the region (one histogram for
each spectral input). The threshold values are selected as
the upper and lower bounds of the "best separated" peak
which appears in the set of histograms. There are two
problems in the use of this technique for the segmentation
of our set of images. First, the segmentation method is
much too slow for processing a large set of images in a
reasonably short time. Second, the segmentation technique
was developed for multi-spectral images and could not be
expected to work as well on the monochromatic images.

Planning: The first problem is solved by the
introduction of "“planning." By planning, we mean the
generation of an approximation for the final segmentation
using a reduced version of the image and the use of this
approximation as a plan to more efficiently derive the true
segmentation of the image. Ohlander gave a time of about
ten hours for the segmentation of a color image with 0.5
million pixels (nine parameter for each pixel, each parameter
represented by about eight bits). This time would be
reduced to about five hours, if run now, because of simple
algorithmic improvements to many of the programs which he
used (such as to the smoothing procédure). The use of
planning further reduces the total time to less than one half
an hour (inciuding the reduction time), or about one order of
magnitude. There is also overhead involved in the
manipulation of large images which is not reflected in these
times. We present the segmentation times in hours rather
than the number of operations which was used elsewhere in
this thesis to enable the comparison with the times*for
Ohlander’s segmentation. Both of these segmentation
systems were run on the same computer system, so that the
times are comparable.

Monochromatic  Images: The segmentation of
monochromatic images required additional alterations to the
initial segmentation method. The original segmentation
method was based on the hope that if one feature can not
provide a reasonable split of the region, then, perhaps,
some other color feature. For example if two regions have
the same intensity but are different colors, then the
intensity parameter alone could not be wused for
segmentation, but another color parameter (possibly hue or
Q) will help in the segmentation. When the procedure is
presented with only one spectral input, there is no other
color parameter to turn to when there is only one peak in
the histogram. The large monochromatic images also
contained many small different objects which caused the
histogram to have only one peak since the range of
intensities for each region overlapped the ranges of
intensity for other object.

We can introduce additional spectral-like features by
the use of simple textural operators designed to show
specific features such as homogeneous regions, or high
contrast areas. We introduced a feature, the number of
micro-edges in the reduction window, to indicate general
homogeneous regions. A homogeneous region is one with
few micro-edges so thal these regions can be extracted by
using a threshold of zero edges in the plan image. The
points where the few edges occur will appear as small holes
in the segmented region and are eliminated by the
smoothing process. This threshold could not be applied
directly to the initial micro-edge image (it is a binary image).
The individual micro-edges would appear as small holes (a
few points) in the thresholded image and would be
swallowed up in the homogeneous region by the refining
and extraction procedures. The smooth regions generated




by the plan limit the area where this threshold is applied so
that only a small number of edge points are swallowed up.
The regions which are extracted are more sensitive to noise
in the image, especially noise in one parl of the image such
as scratches. This feature is not generally useful for the
extraction of exact regions, but proved useful for the
extraction of general homogeneous regions.

Another {extural measure is the excursion of intensity
values in the reduction window (maximum in the window
minus minimum in the window). This measure is applied to
the SLR scene to distinguish between the high contrast
arcas and the low contrast areas. This textural measure
generated large general regions which correspond to the
general textured areas. These were the only textural
operators which were used in the segmentation of images.

Many other operators are possible, and for easy
incorporation in a general segmentation method the
operators should produce image like values for all points in
the imagé, There are many possible textural operators, but
we did not want to turn this thesis into an exploration of all
possible texture operators. The intent was not to judge the
quality of other texiural operators, but it should be easy to
incorporate others into this system.

Another technique used in the computation of
histograms was to use portions of the image rather than for
the entire image. This was intended lo approach a solution
to the problem of many small similar regions. The use of
partilions means that the number of separate objects which
contribute to one histogram is reduced. If the partitioning
of the image is continued as far as possible, at some point
there will be only two distinct regions (or possibly one) to
contribute to the histogram. At this point the threshold for
segmentation would be obvious. Going to these extremes
should not be necessary. We implemented a division of the
image into only four or nine partitions.

Feature Extraction

There are at least two very different techniques to
give a symbolic representation of an image. One is a three-
dimensional description of the objects in the scene such as
representing all objects by a set of simple three-
dimensional objects. This representation did not appear to
be feasible to derive from general multiple views, and did
not appear to be very useable for change analysis. We
decided that the symbolic description would be composed of
a set of regions which would be those generated by the
segmentation procedure, and a set of features for each
region describing various properties of the region. We
group the features into classes similiar to those used by
human beings performing the same sorl of lasks. These
feature classes include size, shape, color (including texture),
location, and patlerns. The exact feature measures were
designed to capture various aspects of these feature
classes. We computed the region size, absolute position of
the center of mass, the position relative to other regions
(above, below, etc.), adjacencies, average of color values or
textural values, orientation, orientation independent length
to widlh ratio, the fraction of the minimum bounding
rectangle filled by the region, and the perimeter</area
designed to indicate irregular regions. These are not all the
feature measures which might be necessary for other tasks,
and resuits should be more reliable when more features are
available.

The methods for the computation of these features
were not optimized. The computation effort for some
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features is insignificant since these features are derived
from other values (such as the length to width ratio, the
orientation, fractional fill, perimeter©/area). The expensive
operations were the ones performed on all the points in the
region, where most of the expense was in looking at the
region points rather than computing feature values. The
expensive features included: the color averages (mostly
because they are used so often rather than being
individually expensive), boundary computations (though it is
less expensive than color averages since fewer points are
accessed), orientation transformation computations (since
they use the boundary computation), the initial color and
texture transformalions, and the relative position
computations (which are expensive only because of the
machine implementation). Like the segmentation operations,
the expensive feature computations are amenable to
implementation on special processors. The major descriptive
feature which we did not study is the extensive use of
textural measures.

Symbolic Rogistration and Change Analysis

The earlier systems for change analysis relied on
correlation guided matching to locate corresponding point
pairs and used lhe location differences of these point pairs
either for transforming one image so that it is aligned with
the other, or for depth analysis of stereo images. The
aligned images are subtracted, producing a third difference
image. This difference image must then be analyzed to
determine where the changes occurred, and what type of
changes occurred. Special purpose systems have been built
to perform these tasks, so that these apparently expensive
operations are performed quickly. Change analysis systems
which are intended to operate on uncontrolled image pairs
(i.e. not stereo pairs) encounter several problems. The
addilion of more color parameters makes the problem more
complex since the extra spectral inputs must be processed
just like the initial input instead of simplifying the
processing. Major changes in the point of view of the
observer (especially in oblique views) will cause objects to
change position with respect to each other and can cause
inaccurate matches when those matches depend on intensity
values in a neighborhood and are difficult (if possible) to
account for in a global warping of the image. These systems
used a "rubber sheet" warping so that points adjacent in
one image are assumed to be adjacent in the other image. A
new object in the scene can cause errors in matching, but
such changes would usually be indicated as large differences
in the difference image.

We present symbolic matching as an alternative
matching technique to eliminate the problems encountered
by earlier signal based change analysis methods. The
addition of extra spectral inputs makes the segmentation
processing easier and more reliable, and, if the desired
regions are large enough, the use of planning means that
the segmentation times will nol be adversely affected by the
addition of more inputs. Also, the addition of color
parameters means thal the matching procedures will have
more features to use in the matching, this should also
improve the reliability of the symbolic registration. Since
the matching for one region does not necessarily depend on
the intensity values in the image adjacent to the region
being matched, the change in the relative position of objects
should not reduce the chances of a correct match. We use
several different features of the region including the
adjacency and relative position relations, but the knowledge




about the scene can specify that the relative position or
adjacency relations will change: thus indicating that these
teatures are not used for the symbolic registration. New
objects are indicaled by regions in the second image which
had no corresponding region in the first image, and missing
objects by regions which fail to match with any region.
Finally, the change results produced by a signal based
change analysis system are in the form of another image
and must then be processed again to determine what
changes have occurred. The symbolic change analysis
system describes the changes as changes in the features of
regions (or changes in the number of occurrences of an
object). Thus there is no need for extensive processing of
the resulting image to discover the kinds of changes, since
these changes are given directly from the symbolic analysis.

Symbolic Registration: We developed a procedure
which will determine a match rating for two regions in two
different images. This rating procedure incorporates the
differences between all available featurés of the regions. If
the match is exact (e.g. matching a region with itself) then
the rating will be zero, and as the match worsens, the rating
decreases. The knowledge sources can indicate that certain
features will change and thus should not be used in the
malching procedure. For example, when the task description
indicales that there are rotaion differences between the
two images, the matching procedure will not use the rotation
dependent features such as the absolute position, the
orientation, regions above, regions below, etc. Rather than
eliminate the use of these features altogether, we introduce
different strengths for features which should remain
constant and features which will change. The strengths are
selected so that a bad match in one feature that should
remain constant will have more impact than several bad
matches in features which may change. This region to
region match procedure is used in the symbolic registration
procedure to find the best available match. To find the
region in the second image which corresponds to a region in
the first image, the symbolic registration procedure matches
each possible pair of regions to find the best match. This
best match is considered to be the corresponding region.
Even if a region does not have a corresponding region in
the other image, some region will be selected as the
corresponding regiun, This region will be the most similiar
region, but these two regions should have differences in
features which should remain constant. Also, another region
in the first image should correspond to the same region in
the second image. This matching procedure has been
applied o the six sets of images. We generated about a
dozen sets of symbolic matching results (because we can
match the second image to the first image in addition to
matching the first image to the second image we can
generate more sets of matching results than we have
scenes). Several images including monochromatic and side-
looking radar images were registered using this technique.
Figures 1 and 2 illustrate the nature of the results obtained
by this technique in the presence of changes in perspective
and scale.

Change Analysis: For some images we are given
(through the image descriplion) the fact that there is a scale
change between images (as in the urban-industrial scene).
The amount of the scale change is not given by the
knowledge elements, but it can be computed from the size
differences found in early matches. This scale change is
used to adjust the size measures for regions in later
matches. Since these is a scale difference between the two
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images, the absolute size and location features will change
and can nol be used as constant features in the matching
operation. But with the use of the computed scale
differerce, the size feature can be used as if it is a constant
feature. This use of the change results derived from the
initial symbolic matching procedure can also be applied to
the absolule location and orientation features, in addition to
the size feature. These adjustments can apply only when
the changes are uniform throughout the image, which is not
the case when there are perspective changes as in oblique
views. But such adjustments are possible to use in most
aerial images.

The pier subsection was used for the analysis of the
changes to determine the number of "ship" regions in the
two images. To perform this task we generated a pseudo-
image containing a representative ship, pier, water, and
shadow region. We then matched the two pier area
segmentations with this pseudo-image to determine which
regions are "ships.” The results of this analysis are shown in
Figure 2. Some of the "ships"” were incorrectly segmented:
they were broken into two regions, or only half of the
region was segmented and the other half was merged with
other regions (such as the piers or water). But the ship
regions which were segmented were matched to a ship
region. In the first subsection some errors occurred. The
water regions were not as smooth and thus the average
intensily and number of micro-edges in some of the water
areas resembled the ship parameters more than the water
parameters. In the second subimage errors were also
caused by the matching of small parts of piers to ships
because of the number of micro-edges in these pier regions.
This was an attempt to extend the matching procedure into
a rudimentary “recognition” procedure to compute the
number of occurrences of a type of region feature.

The symbolic registration and change
processing is relatively fast when compared with all the
other processing. This processing is best suited for
implementation on general purpose computers rather than
special purpose processors.

Conclusion

In this paper we have described the structure and
present state of perfomance of a symbolic registration and
change detection system. This appears to work well in a
wide variety of infages in finding corresponding regions.
The match is based purely on symbolic features and the
system clearly demostrates the feasibility of image
registration including cases where signal registration
techniques would have failed either because of wide
differences in the direction and position of view (See also
the paper by CDC in this volumn). The concept of change
analysis, on the otherhand, proved to be more elusive. It
appears to be extremely lask dependant ie. one has to
impose substantial task structure and correspondingly highly
task specific programs before on can have useful change
detection systems. At present, work is in progress to
extend these techniques to a larger class of images with
more severe perspective and scale changes.
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IMAGE REGISTRATION EXPERIMENTS

B, Glish, W, Kober, G, Swanlund

Control Data Corporatiom, Digital Image Systems Division

ABSTRACT

The usefulness of symbolic level process-
ing was evaluated for image registration.
Coarse alignment points were obtained using
segmentation procedures. These were used as
coarse alignment of a precision registration
technique., The results indicate that this
procedure is effective for matching images,
which have gross differences between them,

INTRODUCTION

Image registration is of major importance
in many imagery processing systems. Examples
are; scene matchers for navigation and termi=-
nal guidance, overlay of reconnaissance and
reference data bases for target position trans=-
fer, registration to prior coverage for tem=
poral analysis and change detection, overlay or
fusion of multisensor data and stereo photo=
grammetry,

The principal matching techniques to date
are signal level matchers, That is the sensor
signal of intensity or range is arranged in a
two dimensional array or image., Registration
is achieved by driving this image into corres-
pondence with a reference image. While these
techniques have been generally satisfactory,
they require both spatial and signal similarity
between images., Gross dissimilarity due to
different viewing geometry, seasonal variations,
sun angle variations, weather conditions and
changes in the scene content can defeat the
registration process,

Recent efforts on symbolic level represen~
tations offer the promise of increased toler=-
ance to image dissimilarity, To this end, Car=~
negie Mellon University and Control Data under-
took a joint effort, Control Data selected
imagery which represented difficult problems in
image registration, Carnegie Mellon applied
symbolic level procedures to find suitable match
parameters and subsequently transferred these to
Control Data for evaluation, The results are
described below,

DEFINITIONS
The distinction between signal and symbolic

level representation is not always clear, For
the present study we arranged them into three

groups of ascending abstraction,
1., Raw signal level
e Intensity (or tonal) image
e Range image

e Intensity vs, range (three dimen-
sional) image

2, Enhanced signal level
e Spatial frequency filtered image
e Edges
e Intensity or tonal slice
3, Symbolic level
e Tonal regions
o Texture regions
e Object shapes
Group 2 might be considered symbolic level but
principally is only a deletion of portions of the
image. Furthermore, these features are already
in wide spread use and hence are outside the
spirit of this effort,
STUDY APPROACH

The application is restated as:

Precision matching of two images of a scene
in spite of:

e Seasonal change

e Illumination change

e Ground change

e Viewing geometry change

e Different sensor types
The problem is:

Signal level matchers tolerate only limited
variation between images.




The approach is:

Utilize symbolic level representations for
coarse match and signal level for precision
matching.

The approach is illustrated in Figure 1.

Scene 1

Symbolic Level Signal Level

Scene 2

Coarse Match Fine Match

Figure 1, Approach

APPLICATION: CHANGE DETECTION

One application requiring precision regis=
tration is change detection, An example of a
difficult case is the Norfolk Harbor scene, The
two images of this scene are shown in Figure 2
and 3. They were taken under the following con-
ditions:




FACTOR

IMAGE 1

DATE
TIME
ALTITUDE
SCALE
SHADOWS
GLINT

28 Jan 71
1310
4800
1:9600
Yes
No

IMAGE 2

14 Apr 72
1520
5700"'
1:11,400
No
Yes

GROUND CHANGES: VEHICLE MOVEMENT ,CONSTRUCTION

Segmentation processing using tonal and tex-

ture features by S, Pricel at cMu provided the
symbolic level feature maps shown in Figure &4,
His processing included a search which identified
12 matching features between the two images. The
centroids of these 12 were then used as the coarse
registration parameters,

The fine registration procedure used was a
precision correlation algorithm called TRAK devel-
oped previously at CDC2, TRAK allows control
points and scaling parameters to be inserted for
coarse alignment, Thus it was relatively easy to
incorporate the output from the symbolic level
coarse matching. Two alignment parameters were
computed, 1) the most extreme points in x and y
coordinates were used to estimate scaling and
rotation between the two images, 2) two other
points were used to estimate translation errors.
With these inputs, precision registration was
evaluated for various options within the TRAK
routine, These options are listed in Figure 5,
Shadow and glint compensation remove these decor=-
relating influences from the correlation.
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IMAGE 1

IMAGE 2

SCENE
ENHANCEMENT

Ll

PRECISION
REGISTRATION

1

CHANGE
DETECTION

Fig. 5

SHADOW
GLINT

—
TRANSIATE
SCALE

=

IMAGE 1
Fig. 4.

IMAGE 2

Match Regions From Symbolic Level Process




EXPERIMENTS

Three experiments were conducted using the
same coarse registration points for acquisition
and scaling.

1) Precision registration of the original
two images.

2) Precision registration with shadows and
glint deleted in the registration process,

3) Precision registration after pre-process=
ing to remove redundancy.

Fig. 6. Difference Image

The difference image after the precision registra-
tion of the two images, Fig. 2, 3 is shown in Fig,
6. The initial registration points were at the
left side of the image, in the vicinity indicated
by arrow 1.

The initial registration points had some
translation error as evidenced by a slight ghost=-
ing (light ring) on the right edge of the oil
tanks, The precision registration algorithm re-
covered and soon had the images in registration,
However, it then encountered regions with exten=-
sive shadowed portions in image 1 which were not
present in image 2, This caused the process to
diverge. By the time it reached the point indi=-
cated by arrow 2 it had diverged beyond recovery,
At least two options are available at this junc-
ture, 1) Include more points from the segmen=
tation process so that the precision registration
process can be re-initialized or 2) detect the
shadow and glint regions, and delete them from
the registration process. The first option of re-
start was not practical in this case since there
weren't any control points available in the region
of poor similarity,

The second option of shadow and glint re=-
moval was used, The results of this process is
shown by the difference image, Fig. 7. Note that
the shadow and glint regions are retained in the
difference image. They were only left out during
the registration process. With this option, the
images were kept in registration over the entire
scene, This can be verified visually by exami=-
nation of the difference image. For example, the
arrow at point 3 shows a distinctive region on
the roof of a building. This was dark on both
images. Thus the difference image should be
close to the grey level corresponding to zero
difference. This is the case.

It should be noted that the registration
procedure also normalizes the tonal distributions
between images, Thus regions of different tonal
values would be equalized before differencing.
The region used for adjustment must be selectable
s0 as not to normalize out desired changes, Thus
it is both an image - and target - dependent
parameter,

Fig, 8 is the same difference image as Fig.7
but thresholded into positive (black) negative
(white) and no (grey) change regions., The selec-
tion of threshold determines the interval assigned
to no change. These are changes which have some
level of contrast to the background. Visual in-
spection reveals changes due to shadows (arrow 4),
vehicle movement (arrow 5), ship movement (arrow 6)
and construction (arrow 7). It is significant
that the precision registration and tonal normal-
ization permits a confident analysis of changes
due to the movement of small objects and to
changes of low contrast., Furthermore, the shad-
ows can be deleted if they are distracting to the
interpretation,

PREPROCESSING

One form of preprocessing often used is




spatial filtering. For example, low pass filter-
ing can permit more tolerance to out-of-registra=-
tion errors for an initial alignment procedure.
The image is re-mapped and then a more precise
registration is attempted., On each successive
run, the filter bandwidth is increased.

The Norfolk image was run with simple low
pass filtering, However, the registration results
did not improve. The apparent reason for this
behavior is that much of the similarity between
images was in the edges, Filtering these edges
destroyed a significant amount of the correlation
signal content,
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Another preprocessing technique tried was
an adaptive non-linear filter. Here the proced=-
ure retains edge discontinuities while smoothing
regions with no little tonal variation. The
result of registration with this preprocessing is
shown in Fig, 9 as a thresholded difference
image, For comparison, Fig.- 10 shows a thresh-
olded difference image without this preprocess-

ing. The results are dependent on the threshold
setting but in general appear similar., The reg-
istration precision was about the same. The

major difference seems to be that the preprocess-
ing removes some of the noise while also losing
some of the change detail., Scene dependent know-
ledge is needed to determine if the detail dis-
carded is significant,

Fig. 7.

Difference Image Using Shadow Deletion

Fig. 8. Thresholded Difference Image
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One conclusion from this last experiment is
that the adaptive procedure gave better registration
performance than simple low pass filtering. However,
it needed shadow deletion to achieve registration,
Thus the performance was not any better than with=-
out preprocessing,

SUMMARY OF EXPERIMENTS

The symbolic level processing provided scale
and translation information for coarse alignment,
Subsequent precision registration was successful
only if the shadows were deleted in the registration
process, In this case, precise registration was
obtained in spite of gross changes in scene content
and lighting conditions,

9. Thresholded Difference Image With Preprocessing

10.
Preprocessing by low pass filtering gave
poorer registration performance, A preprocess=
ing technique which retained detail gave similar
performance to the unpre-processed case. This
illustrates a well known principle that prepro=
cessing is sensitive to scene content as well
as to the amount of misregistration,

Fig. Difference Image Without Preprocessing
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IMAGE SEGMENTATION AND OBJECT DETECTION BY A SYNTACTIC METHOD

Janmin Keng
Purdue University
W. Lafayette, Indiana 47907

INTRODUCT I ON

Most of the existing image segmentation tech-
niques utilize only statistical properties of an
image and ignore the useful syntactic and con-
tectual information. Since an image often ex-
hibits a hierarchical structure, image segmenta-
tion can be effected by the syntactic approach.
This paper describes a syntactic image segmenta-
tion technique which detects the edges of small
textural areas as well as larger ones from the
real world satellite and aerophotographic images.
This technique has been extended to the object
detection. The experiments on tactical target
detection from the infrared images have been con-
ducted. The experimental results show that this
technique is general and feasible to different
types of images for image segmentation and object
detection.

GRAMMATICAL INFERENCE

In Keng and Fu [4], and Fu and Booth [2] the
details of grammatical inferences for tree gram-
mar and tree transformational grammar are de-
scribed. Here we state the inferred results as
follows. The inferred tree grammar is to de-
scribe the boundaries of the image segments. The
primitives for those patterns are:

oy &
v 4

C— g +—

d\h\

and the window size is chosen as 8x8 array of pix-
els., The positive samples are those patterns
starting from a primitive followed by at most
three branches. The negative samples are those

patterns in which there is no boundary line or
just singular primitives or pixels in it, Ap-
plying the tree grammatical inference procedure,
a set of tree grammar is inferred to describe the
boundary structures.

The tree grammar is Gt
Gt = (v, r, P, S)

where V = {5,*,‘\' ’A2|A3JA["A6'A7’

a,b,c,d,e,f,g,h}
r(2) = {0} r(b) = {1,0} r(c)
= {3,2,1,0} r(d) = { 2,1,0}
r(e) = {2,1,0} r(f) = (3,2,1,0}
rlg) = {2,1,0} r(h) = {1,0}
r($) = 2,1}
v

T = {¢ a,;b.-’c,\d, ‘etkfv"gokhv*}
and grammar rules P =

S+ § S+ ¢4 S > 4 s +» 4 s > ¢
7\ ! | ! !
A' I\2 Al A6 A2 A7
A - e A -+ c
1 s 2 |
AI A2 Al A2
A > - A - d
: 7 % - 7N
Al Az Al I\2
A -+ f A -+ g
' Z N - N
Al Az A' Az
A‘ - f A2 -> f
21N 7N
B%% g
A' > c
2N
A3 A,. A5




e
I’«3 > I? A3 + (‘ll A3 - l
A A > ¢ A > h
A3 -> If 3 -> gl 3 : 3 :
A
A3 A3 A3 3
PRSI S RSl L I R
4 | b | b
A‘& A“ Ah
50 gty Bt eIV AR I S
Ay * I L ? (1 | [ |
Ay Ay Ay Ay
b A <+ A e
As > : 5 : 5 I
As 'As A5
A > h
As > f| A5 > g' A5 * <|: 5 ;
A
Ag Ag As 5
A > c A - c
A6 > e] A6 -> el 7 : 7l A
A6 Al A7 1
iy f
A] t e Al C A‘ e |
| | A
A2 + ¢ Az + d A2 +> g A2 o {
| | |
A, A, A, A,

2 2 2
A3 e A A3 =i d A3 ok L
A3 = f A3 » 19 A3 - A3 * h

5 5 5
A5 + f A5 > g A5 * ¢ A5 + h
A6 * . A7 -

A transformational grammar is a set of gram-
mar rules to transform one pattern from one form
to another [1,3,4]. A line smoothing technique
can be designed by a transformational grammar.
Here we introduce the tree transformational gram=
mar for line smoothing technique. The concept of
the syntactic line smoothing technique is as
follows: The irregularities are usually caused

by the digitizer, noisy patterns, and so forth,
These are in forms such as zig-zag of the line
patterns. The tree transformational grammar eval-
uates the contextual information of the patterns.

SRSV PO L~ Y
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if the context of the pattern satisfies the trans-
formational grammar, that patterns is transformed
into a smoother pattern. By this syntactic line
smoothing technique, the zig-zag of lines is
smoothened.

SYNTACTIC IMAGE SEGMENTATION ALGORITHM

A syntactic approach to image segmentation
has been investigated which involves two levels
of processing. The first level, referred to as
the preprocess, primitive extraction, consists of
two steps referred to as (1) texture region primi-
tive extraction, and (2) boundary primitive ex-
traction. The second level, which is the syn=
tactic analysis, requires inference of tree gram-
mar to describe the boundaries of homogeneous
regions. The grammatical inference procedure has
been described in section 11. The process of
tree grammar analysis utilizes the corresponding
parser from the inferred tree grammars to process

the primitive extracted image. Then an image is
segmented.

Algorithm SISA (Syntactic Image Segmentation
Algorithm)

Preprocess: Primitive Extraction
A. Texture region primitive extraction

Since the satellite image is very rich in
texture, the simple grey level thresholding tech-
nique for segmentation is inadequate. Texture
analysis has been studied in [5,6]. The first
part of the proposed technique is texture region
primitive extraction. The texture is defined as
the over-all or average spatial relationship
which the grey levels in images have to one an-
other. The histogram equalization technique is
applied first to requantize the image. |f there
are finite grey levels k, the joint probability
density of the pairs of grey levels that occur at
pairs of points with distance d is computed. The
array is a k by k matrix P(i,j). Then a vari-
ability texture feature is calculated to measure
the spatial relationship of the grey levels of an
image.

VARIABILITY = = T (M)log("—(-'-ﬂ)". R is
1% R R
the normalization constant and k is the range con-
stant. From our experiment on the images of the
Indianapolis area (central Indiana), this texture
measurement characterizes the major land-use
classes as agriculature, tree, old residential,
new residential, and water areas.

The window size used is 11xll pixels. Note
that it is quite possible for some textural area
to be smaller than the window size, or the bound-
ary between different textural areas lies in the
operation window. In the technique, this is
taken care of as we locate those boundaries by
moving the 11x11 operation window 4 pixels at a
time., Thus, the potential boundaries could be
preserved and the spatial relationship is still
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extracted because the window size (11x11) was not
reduced. After obtaining the texture values for
these 4xh4 unit cells, we threshold the histogram
of texture values in the texture domain, and then
assign texture codes to the segments. (The his-
togram is made by those values from shifting the
11x11 window 11 pixels at a time). In the ex~
periments on the test images, since the histogram
is strongly multimodal, it is reasonable to
assign different codes to the pixels to form the
texture region primitives.

B. Boundary primitive extraction

1. Horizontal processing: Following the tex-
ture region primitive extraction is the boundary
primitive extraction. The Horizontal Process pro-
cesses the ''"texture region primitive assigned
image'' row-wise to locate the potential horizontal
boundary segments. The operation procedure is as
follows: let Q(l,J) be the picture function at
location (1,J)

Step 1. Start with Q(1,J) as reference.

Step 2. Compare Q(!,J) with Q(1,J+1). If the
distance is smaller than a specified
value, a '"zero" is set on Q(I,J) and
Q(1,J41). Then Q(1,J) and Q(I,J+2) are
compared. |f the distance is greater
than or equal to the specified value. A
'one' is set for Q(l1,J+2) as a potential
boundary primitive. Then the same pro-
cess is applied with Q(1,J+3) as the
reference.

Step 3. When this process is operated to the
rightmost of the row the Q(I1+1,J) is the
reference and Step 2 is applied until
all the rows are processed.

The idea of this process is to treat the
image matrix as independent rows. After this pro-
cess the potential vertical boundaries of the
image are detected. The reason for comparing
Q(1,J) and Q(1,J+2) (when Q(1,J+1)=0) in Step 2, is
because the reference must be kept in the same
operation, If instead of comparing Q(I,J) and
Q(1,J+2), the Q(I,J+1) and Q(1,J+2) are compared.
The reference is shifted, thus none of the bound=
ary primitives will be detected.

2, Vertical processing: The Vertical Process .

is in the same manner as the Horizontal one except
that it processes the image column-wise to locate
the potential horizontal boundary segments.

3. Logic integration: The result of hori-
zontal process is defined as H and the result of
vertical process is defined as V in the Boolean
algebra. The Logic Integration is a Boolean
function of H and V and it is defined as R(H,V).
R(H,V) = H+V,

4, Syntactic line smoothing: A tree trans-
formational grammar is designed to reduce irreg-
ularities and smooth the patterns, The gram=-
matical inference scheme has been described in
detail in section 11, [4].
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SYNTACTIC ANALYSIS

In the areas of language compiling, computer
communication and syntactic pattern recognition,
error correcting parsing techniques have been
applied to remove the uncertainty and errors in
the process. The syntactic analysis for image
segmentation is a top-down tree parser with the
error correcting ability. The parser differs
from other error correcting parsers in the way of
grammar construction and the parsing scheme. The
overall system has an on-line syntactic tree
parser and an off-line error correction mechanism.
The advantage of this design is the high effi-
ciency when the input pattern is not noisy. Be-
cause the off-line error correction is initiated
and used only when the uncertainty occurs. The
on=line tree parser is a top-down parsing scheme
which accepts the correct patterns and reject the
incorrect patterns. The uncertain patterns are
left for the error correction mechanism to cor-
rect. Thus, the grammar used is a grammar set
which does not describe the error transformation.
The error correction mechanism is a top-down
error correction scheme, also is the grammar
parser. The top-down error correction is designed
because in parsing tree languages, the partially
constructed tree conveys much usable information
about what should appear next in the structure.
This information is not as readily available in
the bottom-up parsing. The bottom-up method
cannot easily use the global context (like all
incomplete branches), and will have to rely on
the local context immediately surrounding the
error pixels. The inputs for this top-down tree
parser are the tree languages, which have been
encoded as tree linked lists, (shown in the sec-
tion of syntactic line smoothing technique) []and
the tree grammars. The tree grammars are in the
data structures of grammar table which is shown
as follows:

For a tree grammar Gt = (v,r,P,s),
V= {s,v',vz...vn.t'.tz....tm.i}
Vp = {#,t',tz....tm)

r(t‘) = kypeensr(t) =k, r($) = ko
P=s

/.
‘eee

and so forth,

VI"'Vk

the maximum value of {k'...km} is assumed to be k,

then each rule of tree grammar is constructed as
follows:

S T(s) N(Tls)) i L \T ’ |
left side of grammar iprod.nmln! no. branches t(l-)lﬂ:olnuri wln\or.,

A it

For example, a grammetic rule as Ny ey is represented.

/\

V' Va V,
In the grammar table as follows:

1 T(s) W(T(s)) P, ’ ’y s P

0 Y 7 B e




There are three stacks used in the algorithm
STACK 1 for input sentence, STACK 2 for grammar
table, and STACK 3 for backtrack parsing in the
error correction mechanism. The algorithm of the

top-down tree parser with error correction ability

is as follows:

Algorithm TPEC:

Input:

Tree grammar G_ = (V,r,P,S) and tree lang-

uage of input window

Output:

Error corrected sentence.

Algorithm:

(1)
(2)

(3)
(&)

If TERMINAL # § go to step 16

If FLAG (TERMINAL) = 0 go to step 16
(FLAG equals no. of branches)

Q -+ TERMINAL

STACK 3 <« Q, STACK 1 <« LINK 3(Q),

STACK 1 « LINK 2(Q) STACK | « LINK 1(Q).
(LINK 3, LINK 2, LINK 1, are the three
pointers of the tree structure of the
input pattern).

(5) ¥ 1 satisfies FLAG(Q) = N(T(S(1))) where

(6)

(7)
(8)
(9)
(10)
(1)

Q= (T(5(1))) go through following steps
6 = 11 until a successful parse.

STACK 2 « P3 (T(s(1))), STACK 2 « P2

(T(s(1))) STACK 2 « P, (T(s(1)))
If STACK 1 is empty, go to 17

Q + STACK 1, FLAG(Q) = K

{f STACK 2 is empty, go to step 16
R ;-STACK 2

vV T(R), If T(k) = Q and all "1'" have not
been tested go to step 5

(12) ¥ T(R), If T(R) # Q, then Q « STACK 3,

(13)

(14)

(15)
(16)
(17)

FLAG (Q) = K~1 go to step 4, parse the
combinations of selection K-1 branches
until a successful parse achieved then
go to step 13.

I1f LINK 3(Q) = LINK 2(Q) = LINK 1(Q) = o,
then go to step 7 (¢ end marker for
image window edge).

If FLAG (Q) = 0, then delete Q,
Q « STACK 3, FLAG (Q) = K=1 go to step 4.

go to step 4
reject input sentence

error corrected sentence (pattern)
achieved.

(Tree Parser with Error Correction)
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OBJECT DETECTION BY A SYNTACTIC METHOD

The syntactic method for object detection
consists of the primitive extraction process and
syntactic analysis. The primitive extraction
process consists of region primitive extraction
and boundary primitive extraction. The primitive
extraction process is similar to the one in the
syntactic image segmentation algorithm, If the
image is not rich in texture, the region primi-
tive extraction process just measure the mean
vectors of the image instead of texture features.
In this case the computer processing is extremely
fast. For the tactical target detection, the
VARIABILITY texture measurement of section Il is
still to be the technique.

The syntactic analysis requires the infer-
ence of the tree grammar which generates the
boundaries of the objects of interest. The prim=-
itive extracted image is processed by the tree
parser which is constructed by the set of inferred
tree grammars. Thus the object is detected from
the scene.

EXPERIMENTAL RESULTS

The syntactic methods for image segmentation
and object detection have been implemented on the
IBM 360/67 multi-user time sharing computer at
the Laboratory for Applications of Remotely Sens-
ing (LARS). The experiments have been conducted
on different LANDSAT, aerophotographic, and in-
frared images.

1. LANDSAT images. Fig. 1(a) is a LANDSAT
image over the Indiana area. The syntactic image
segmentation result is shown in Fig. 1(b). The
area is 88x88 image. This area has been classi-
fied by maximum=1ikelihood point by point classi-
fier. The comparison of segmentation result and
classification result [4], shows that the syn-
tactic image segmentation is quite successful,
Also, the computer processing time of the syn-
tactic method is only 63 seconds. But the classi-
fication technique takes much longer CPU time
than the competitor.

2, Aerophotographic images. For the purpose
of showing that this method also works for aero-
photographic images, the experiments on aerophoto-
graphic images have also been conducted., The
image is Fig. 2(a). The image segmentation result
by syntactic method is shown in Fig., 2(b).

3. Infrared images. The object detection of
army vehicles by syntactic method has been im=
plemented and the experiments on infrared images
has been conducted. Fig. 3(a) is the infrared
image of a battle field scene, Fig. 3(b) is the
object detection result by the syntactic method.
The object is successfully detected which is a
truck. Fig. 4(a) is another infrared image.

Fig. 4(b) is the object detection result and the
target is also detected.




CONCLUS IONS AND REMARKS

In summary, the experiments have been con-
ducted on different images obtained from satel-
lite and aircrafts. The results of syntactic
image segmentation compares favorably accurate as
those from statistical classification techniques.
Also another advantage is that the computer pro-
cessing time of the syntactic method is much
less than that associated with the classification
technique.

It has been observed from simulation and
experiments that the proposed syntactic technique
segments the small areas of textural areas as
well as larger ones in the image. The syntactic
method for object detection contributes to the
military reconnaissance, biomedical diagnosis,
and industrial automation. Accompanied with the
Syntax-Directed Method [7], this technique con-
tributes to the automation of image understanding.
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Fig. 1(a) Satellite Image of Indiana area.
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Fig. 1(b) Image segmentation result by

syntactic method on Fig. 1(a).

Fig. 2(a) Aerophotographic Image of

Tippecanoe County, Indiana.

Fig. 2(b) Image segmentation result by

syntactic method on Fig. 2(a)
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Fig. 3(a) Infrared image of tactical target
scene.

Fig. 3(b) Object detection result by the
syntactic method on Fig. 3(a).

Fig. 4(a) Infrared image of tactical target
scene.

Fig. 4(b) Object detection result by the
syntactic method on Fig. 4(a).




A BOTTOM UP IMAGE SEGMENTOR *

Guy Coleman
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This effort is directed towards a method of
automatically segmenting imagery. The method
so far developed is autonomous and reasonably
fast. A very general block diagram and some
preliminary results are shown in figures1 through
8. In the clustering technique, the only under-
lying a priori assumption is that homogeneous
clusters in N space are desirable; and the search,
discovery, and description of these homogeneous
clusters is a useful output. Clearly, if these
clusters correspond to regions of interest in our
imagery, then we have confidence in the possi-
bility of devising discriminating functions for sub-
sequent segmentation. Such techniques for learn-
ing of the intrinsic (or lack thereof) homogeneous
cluster parameters have come to be known as
""unsupervised cluster selection via feature rejec-
tion''. The numerical processes used in these
methodologies are best described as in figure 1.
In viewing the figure, certain similarities are
immed:: tely obvious with respect to traditional
mathes 3 "cal pattern recognition and supervised
learning. Man selects the transducer sensing
the imag: from a vendor, applies his ingenuity to
come up w.th hopefully relevant features and un-
doubtedly has selected too many such features
which are probably correlated and which, there-
fore, could profit from subsequent decorrelation
and feature selection for both equipment minimi-
zation and noisy or irrelevant feature rejection.

The next phase of the cluster selection rou-
tine has a Bhattecharyya computation which makes
one at a time (oaat) measurements on each feature
(dimension) individually with a feedback input to
provide interative power in the selection process.

* This research was supported by the Advanced
Research Projects Agency of the Department of
Defense and was monitored by the Wright Patter-
son Air Force Base under Contract F-33615-76-
C-1203 ARPA order no. 3119.

We will return to this important aspect shortly.
The next box in the figure is the clustering algo-
rithm which is a simplified modification of the
traditional Isodata routine. Here a fixed number
of clusters, K, is assumed and the data is sorted
in N dimensional vector space so that the cluster
means do not change upon further sorting under
the constraint that the within cluster distance of
data points to the cluster mean is minimum.
Thus if m is the mean of the k = cluster and x
is sorted to belong to the cluster set {Cu, then

K

z Zd(x, my )

k=1 x k € {Ck }
is minimum, This algorithm is known to converge
to K different cluster mean vecotrs m, upon the
proper sorting of the data. Once converged, it is
now possible to feedback this information, i.e.
my and x) € {Cy} membership information to
the Bhattacharyya (oaat) calculator to compute
those features which will provide tighter or better
clustering. Thus for the nth feature, we have
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for the usefulness of the ntl feature in separa-
ting cluster Cy from Cj. For K clusters we have
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However, the clustering phase (Isodata)
required a priori knowledge of the number of
clusters, K, prior to iteration. Naturally in
an unsupervised environment one does not have
this information, and as such, one must develop
a best cluster definition, which is the objective
of the last phase of the algorithm. This phase
will feedback the value, K, to the clustering
phase and will monitor the success of sub-
sequent clustering results based upon the
number of clusters K and the feature selection
process in trying to define more homogeneous
clusters. This final stage bases its decision
for the best cluster upon the measure of within
cluster scatter (variance) with the between
cluster scatter or variance. Let

2
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w 2(_Xk'r_r.lk)
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and O, (K) represents the between cluster
variance

2 K 2
o (K) = Z (m, - m )
P k=1 %

where m, is the mean of all the data taken as one
cluster only. Usin O0g (K) and sz (K) we can
compute 0“2, (K) 0p (K) and observe the following
property. For K =1, (i.e. only 1l cluster), then
all data falls into that cluster and there is no bet-
ween cluster variance. Therefore

7 2 gig
o.M o, M =

At the other extreme when every data point is a
cluster itself (K = Maximum) we have no within
cluster variation and

Z 2
O (ma,x)2 o, (ma’;) =0
Because both O and Op >0 in the range
1 =K = max. nWe know by the mean value
theorem that Ow (K) Op (K) must have at least
one peak or maximum as a function of K. And
at this maximum we will have a balance between
within cluster variation and between cluster
variation - Returning to the picture in figure 1
we see that the one image shown is a 256 x 256,
eight bit monochrome image. Features such as
brightness and texture are computed at every
pixel location in the scene. The output of the
feature computation is a 225 x 225 map of vectors
where the components of the vectors are the
values of the features at the appropriate points
in the scene and the size reduction is due to
window effects at the scene edges. The next
step is to perform a multi-dimensional (Karhunen-
Loeve) rotation of the data such that the new
features are a linear combination of the old
features, but are statistically uncorrelated. This
step is performed so that undesirable features

may be discarded and the number of desirable
features retained will be the minimum necessary.
In other words, the decorrelation pPrevents re-
tention of several good but highly correlated
features.

A preliminary clustering is performed to
evaluate the features for their usefulness in
segmenting the scene. The evaluation is based on
the pairwise average Bhattacharyya distance.
Those features which are least useful are dis-
carded and the clustering is performed again.

The clustering algorithm is performed for
2,3,4,... clusters. At each number of clusters,
the product of the between and within cluster
scatter average is computed. The algorithm
is stopped when this product reaches a maximum.
The number of clusters and the cluster means
are forwarded to the segmentation phase of the
algorithm and the image is segmented.

Some preliminary results of this algorithm
are shown on the following pages. The segmen-
tations have been subjected to pseudo-coloring
to improve the visibility of the different segments.

The first set of pictures resulted from using
several variations of the basic procedures on an
armored personnel carrier (APC). The first set -
of APC pictures, called '12 Non-Reduced
Correlated Features'' is the result of clustering
the 12 original features. These features are
considered very preliminary and were used to
permit development of the clustering algorithm ’
and to verify the ability of the algorithm to re-
ject poor features. The algorithm rejected
eight of the 12 features based on the pairwise
average Bhattacharyya distance evaluated at the
picture labeled ''Best Number of Regions' .

The data was reclustered, producing the
second set of pictures labeled '"Best Number of
Regions'' on the page labeled ' 4 Reduced
Correlated Features'' is the end product of the
algorithm, having separated the vehicle from
the background. The bushes in the top of the
scene represent errors, that is, they were
classified as being the same as the vehicle.

The next series of APC pictures is labeled
'12 Non-Reduced Decorrelated Features''.
These images are the result of clustering the
12 features produced by the multi-dimensional
(Karhunen-Loeve) rotation of the 12 original
features. Except for the pseudo-color effects,
these images appear quite similar to the
""12 Non-Reduced Correlated Features'. This
is so because rotation of the coordinate axes
should not affect clustering.




The pairwise average Bhattacharyya dis-
tances for the rotaled features were evaluated at
the best number of regions (eight in this case)
and clustering was performed on the above average
features, in this case four. The results of this
procedure are shown in the series of images titled
'"4 Reduced Decorrelated Features''. The final

result is shown in the image titled ''Best Number
of Regions, " in this case three regions.

The pairwise average Bhattacharyya dis-
tances for the 12 rotated features were such that
the average for one feature was substantially
higher than any of the others. Accordingly, this
feature alone was used to perform clustering.
The results of this are shown in the final series
of images titled ''Single Best Decorrelated
Feature''.

The best number of regions was two in this
case. It can be observed that more errors were
made in this segmentation than in previous ones
due to the enormous reduction in dimension that
has taken place.

The second series of pictures is the result of
segmenting a color picture of a house. The fea-
tures used are derived from the red, green and
blue color planes of the image and there are a
total of 15 (five per color plane). The first pic-
ture (two segments) was decided to be the best
segmentation based on all 15 features. The
additional segmentations are the result of per-
mitting the algorithm to continue segmenting
beyond the best number of clusters.
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FIGURE 5. 4 REDUCED DECORRELATED FEATURES




3 2 REGIONS 3 REGIONS
h (BEST NUMBER
OF REGIONS)

4 REGIONS 5 REGIONS
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A COMPARISON OF SOME SEGMENTATION TECHNIQUES
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ABSTRACT

Two approaches to image segmentation are
edge based or region based. Results using the
two types of techniques on pictures of varying
complexity, such as a single object viewed at
close range and an aerial picture, are present-
ed. Both methods are limited at the current
state of development. However, each approach
is better suited to particular structures in a
picture. Edge techniques are likely to be more
suited for extraction of the linear features such
as roads, while the region methods perform
better for segmentation of the large, uniform,
and irregular areas. It is concluded that an
image understanding system should exploit the
strengths of each to achieve better results than
obtainable when each approachis used alone.

INTRODUCTION

Segmentation is, of course, a key component
in the Image Understanding process. The
numerous segmentation techniques may be viewed
as being either edge based or region based. The
edge based techniques start by detection of local
discontinuities in some attribute, sucih as bright-
ness, of an image and attempt to ccuastruct
object boundaries from them. The region based
techniques attempt to find areas in the image over
which one or more attributes are constant.

It may be that in some sense the two tech-
niques are trying to compute similar functions
and that they should be capable of achieving
similar performance. However, at the present
state of development of these methods, one or
the other technique may be more successful on
certain kinds of images, This is a subject of
active discussion among researchers in the
field, but we are unaware of any comparative
studies,

*This research was supported by the Advanced
Research Projects Agency of the Department of
Defense and was monitored by the Wright
Patterson Air Force Base under Contract
F-33615-76-C-1203.

In this paper, results of processing four
selected, black and white pictures using the two
classes of techniques are presented that lead to
some expected conclusions about their suitabi-
lity for different tasks., The edge based tech-
nique is that developed at University of
Southern California [ 1-2], and the region based
technique is that of Ohlander [3], modified by
K. Price [4], and developed at Carnegie -
Mellon University.

A clustering segmentation scheme that may
be viewed as a generalization of the Ohlander
technique has been developed by H. Andrews
and G, Coleman at USC [5]. However, this
technique is in early stages of development
and results of this processing are not shown.

SEGMENTATION TECHNIQUES

A brief review of the segmentation tech-
niques used is provided here.

a) An Edge Based Method - In this method, a
local edge operator is applied to an irnage
first. The resulting edges are then linked in
straight line segments and only segments of a
minimum length or above are preserved (for
details see [1]). It is hypothesized that such
segments usually correspond to the desired
boundaries.

The linking method is independent of the
edge operator used. However, the final per-
formance is obviously determined by the output
of the local edge operator. We have used a
Hueckel edge detector in previous experiments.
This edge detector is believed to have superior
performance to many simpler edge detectors,
but it is not always effective in presence of
texture., A simple edge detector, which consists
of convolving an image with elongated edge masks
in various directions and choosing the maximum
was developed and found to perform well (for
details, see [2]). This edge detector has
been used in results presented later.

b) A Region Based Method - Ohlander segmenter
operates by computing histograms of various




image attributes and segmenting the image into
regions with a certain range of values of an
attribute. The attribute with the best separation
(a bimodel distribution in the histogram) is
chosen for segmentation. Originally, the method
was developed for color images. We have used
only black and white images here and only the
intensity attribute was used.

This technique is recursively applied to the
segmented regions until regions become too
small or cannot be further segmented according
to extablished criteria of histogram separations.
Regions smaller than a selected size are
ignored. Therefore, long thin regions which
are broken into several smaller regions may
be lost.

EXPERIMENTAL RESULTS

The four test images are shown in figures
1(a) through 4(a). Figures 1l(b) through 4(b)
show the edges detected in the four images.
Hueckel edge detector was used for figures 2(b);
the edge detector described in section 2 was
used for the others. Figures 1(c) through 4(c)
show the regions detected by the Ohlander-
Price segmenter,

Following are some abservations on the
relative merits of the two approaches.

(a) The performance on the simpler picture of
the truck of figure 1 is comparable. The edge
segmentation can be more sensitive, as in
separating the back shadow from the truck, but
the boundary is fragmented into sevaral
segments. Region methods always give colsed
regions, by definition, which may be easier to
handle for some types of objects or processing.

(b) For camouflaged objects, such as shown in
figure 2, the region segmentation technique
splits the object in many parts, Further, for
this example part of the left wing merges
with the background region. This part is better
separated in the edge picture. Also the outer
wing boundaries are detected inspite of the
camouflage. These observations may not
necessarily apply when the camouflaged object
is against a similar background.

(c) In the more complex aerial pictures, the
edge technique seems to extract linear features,
such as roads, with ease, whereas the region
method does the same for parts of image that
are homogeneous, for example the lakes in
figure 3. Note that the wider roads are
extracted as separate regions in both figures
3(c) &4(c)but that the other roads may only be
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indicated by boundaries between regions or not
located at all, The edge method detects many
of the roads in figure 4 which are not indicated
by the regions method.

(d) The more complex parts of the aerial pictures
are not adequately analyzed by either technique,
for example the lower part of the river or the
suburban areas in figure 3. The main difficulty
seems to be due to presence of texture and fine
detail,

CONCLUSIONS

Interestingly, the two methods perform
similarly on large areas of the tested images.
However, specific structures are handled better
with one or the other. The clear implication
is that a complete Image Understanding system
should utilize both depending on its goals. A
straight forward method is (n use a specific
technique to locate particula 8 of objects,

The two segmentation techniques may also
be able to reinforce each other at the image
level, for example using regions to bridge
gaps in boundary segments or to use boundary
segments to sub-divide regions. We have not
examined such interaction in depth.
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REGION EXTRACTION USING CONVERGENT EVIDENCE

ABSTRACT

Scenes consisting of spatially compact
regions which contrast with their back-
grounids can be segmented by extracting con
nectéd components of above threshold values
whose borders match the positions of edges.
Edge/border coincidence thus defines a kind
of “optimal thresholding”, since for any
object we can choose the threshold which
maximizes the coincidence. This
illustrates how the redundancy of differ-
ent information sources aidssegmentation.

1. INTRODUCTION

Image segmentation is an important
task of scene analysis. When an image has
been partitioned into regions, properties
of the individual regions can be studied
and the regions themselves can be de-
scribed and, perhaps, identified. Ex-
amples where segmentation is important in-
clude military target detection, cell
classification, and parts inspection.

When the regions to be studied are
compact, and correspond to physical en-
tities, they are called "blobs" or
"objects". These regions are often
characterized by well-defined borders and
the contrast of an interior texture with a
surrounding texture. Not all scenes con-
form to this rudimentary model. For ex-
ample, cloud masses often lack well-defined
outlines, and many objects consist of a
multitude of subparts with differing tex-
tures. Nonetheless, the model is applic-
able to a variety of diverse imaging en-
vironments, including thermal imagery
analysis, chromosome classification, and
industrial automation.

Thresholding and edge detection as in-
dividual aids to segmentation are well de-
scribed in the literature. The recent
book by Rosenfeld and Kak [1] discusses
many such segmentation methods. The com-
bined use of interior and edge information
has also been investigated. The use of an
edge detection operation to suggest a suit-
able threshold for an image is discussed
in [2]. Edge detection was employed by
Gupta and Wintz {3} to initialize propag-

D. L. Milgram
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ation processes designed to color in re-
gion interiors. Other region growing
schemes use high boundary values to guide
the merging and splitting of regions de-
fined by gray level similarity. For a
survey of region growing, see [4].

One can criticize threshold selec-
tion schemes on a number of grounds for
attempting to associate a single thres-
hold with a (fixed size) window which,
after all, bears no intrinsic relation-
ship to the objects in the scene. First
of all, if the window contains no object
then attempting to threshold is dangerous,
since above-threshold noise regions may
often produce probable looking "objects".
Secondly, if more than one object is pre-
sent in the window then a single threshold
will not suffice. Thirdly, if an object
overlaps several windows then there may
be no consistent representation of an
object (i.e., no representation using a
single threshold). Attempts to divide
the scene up into overlapping windows, so
that objects of maximal size are
guaranteed to lie completely within a
single window, answer this last objection
at the cost of greatly increased overhead.
Chow and Kaneko [5] attempted to overcome
these difficulties by assigning thresholds
to a coarse grid of points and interpolat-
ing threshold values at intermediate
points. In any case, the size of thesmal-
lest thresholdable region depends on the
window size, the coarseness of the grid,
and the type of statistical test used to
determine if a region is thresholdable.
One would prefer, however, to be able to
segment a small region regardless of the
clutter and noise beyond its borders.

Another objection to pure threshold-
ing is the presence of noise regions in
addition to object regions. Noise re-
gions may be difficult to distinguish
when based on size, shape or gray level
features. The broader and higher the
valleys of the gray level histogram, the
more likely that the noise regions will
be extensive and numerous.

A final objection concerns the de-
sign of optimal thresholding techniques




in which the optimality is based on a
statistical model of the gray level popu-
lation. In situations where an object
contrasts strongly with the background,
there may be a number of thresholds at
which the object appears well defined. As
the threshold decreases through this
acceptable range, each object exemplar is
contained within a slightly larger one.
Thus although the exemplars may each look
reasonable, the optimality criterion for
the thresholding does not necessarily
choose a "best" exemplar. This is because
the optimality condition was based on the
whole window rather than on the component
corresponding to the object.

For these reasons, we are studying
segmentation methods which do not require
a commitment to a single threshold in
arbitrarily chosen regions of an image.

This paper describes a method for
segmenting scenes containing thresholdable
objects (i.e., objects that can reasonably
be extracted from the image by threshold-
ing). The method uses thresholding as a
means of discovering candidate object re-
gions. Candidates are then accepted or
rejected based on the coincidence of an
edge map with the region boundary. The
surviving object regions are compared with
the survivors of earlier thresholds, and
only those that best match the edge map
are used to describe the actual objects in
the image. Thus, while a number of thres-
holds are used, only the one defining the
greatest coincidence of thresholded re-
gion border and (thinned) edge is deemed
valid for a particular region. This
method can be considered as defining a
best exemplar for each object region.

2. METHOD

The basic concept of matching the
border points of connected components with
corresponding edge values has been men-
tioned already. However, the implementa-
tion of this idea provides an opportunity
to vary a number of parameters which can
be tuned to respond to different image en-
vironments. In this section we present a
discussion of the method and its applica-
tion to a data base of Forward-Looking
InfraRed (FLIR) images.

The algorithm may be divided into
several steps as follows: image smoothing;
extraction of an edge mask by edge detec-
tion and thinning; thresholding; forming
connected components; and object validity
checking. For a given picture, smoothing
and edge map extraction need be done only
once; whereas thresholding and the sub~
sequent steps are performed over a range
of thresholds sufficient to extract any
objects in the picture.

Figure 1 illustrates the basic con-
cepts involved. Figure la shows several
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object windows along with a number of
possible thresholds for each. Note that
it is not at all obvious which threshold
is best. However when the edge map
(Figure 1b) is overlaid on the thres-
holded picture (Figure lc), we have much
better guidance. Figure 1ld shows the
object region extracted from each window
using the method to be described.

2.1 Image Smoothing

When random noise affects an image,
it has been shown that smoothing can re-
duce the misclassification error
associated with thresholding [6]. Our
concern is that misclassified interior
points will be interpreted as border
points. Since it is unlikely that any
significant edge values exist at these
points, this would tend to reduce the de-
gree of edge/border point match. Smooth-
ing, by making image regions more homo-
geneous, improves the classification per-
formance of thresholding.

In our work, we have preferred median
filtering to mean filtering as a smooth-
ing operator, since median filtering

eliminates small local variations but does

not blur edges. The size of the smooth-
ing window is determined not only by the
amount of noise that must be eliminated
but also by the size of the smallest
object to be extracted. A discussion of
the tradeoffs involved in median filter-
ing appeared in [7]. A comparison of
median filtering with mean filtering for
two neighborhood sizes is illustrated in
Figure 2.

2.2 Edge Detection and Thinning

The smoothed image is the one that
is thresholded in later steps. The edge
map step may use either the smoothed
image or the raw image. The former seems
more reasonable since smoothing can be
treated as a preprocessing step. In
either case, the choice of edge detector
is guided by a knowledge of the edge
population of the image. A very sensi-
tive edge detector, e.g., the 2x2 Roberts
cross gradient, responds to noise edges
and can miss slowly rising edges. It is
therefore likely to allow many noise com-
ponent borders to match the noise edges
produced. Furthermore, because the
Roberts gradient does not respond well to
ramplike or fuzzy edges, the border/edge
match for true object regions will be
low. It is apparent that an edge detec-
tor with good noise rejection is needed.
This can be achieved by using detectors
based on differences of adjacent local
averages. The choice of edge detector
for the FLIR data base was discussed in
{8]. At that time, a detector defined by
the maximum absolute value of horizontal
and vertical differences of 4x4 averages
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was chosen. Since then, a simpler detect-
or which utilizes diagonal differences as

well has been designed and is used in this
study.

Most edge detectors (with the excep-
tion of the Hueckel operator) have
appreciable response in the vicinity of an
edge. For the purposes of the border/edge
match step, the edge response must be
thinned to an "edge map". While parallel,
iterated thinning methods exist for
shrinking narrow regions [9], one can de-
sign a one-pass algorithm using non-
maximum suppression that utilizes the
directional information available from the
edge detector. By keeping track of the
edge direction (resolved to 45° intervals),
the non-maximum suppression can be applied
in the direction normal to the edge re-
sponse, i.e., across the edge. As can be
seen, the resulting edge maps provide
reasonable "line drawings" of the images.
Davis [10] discusses the likelihood that
non-maximum suppression will locate the
point at which the real-world edge occurs.

2.3 Thresholding

The selection of gray levels at which
to threshold gives rise to several prob-
lems:

a) The omission of a threshold from
consideration increases the probability
of missing extractable regions.

b) The greater the number of thres-
holds considered, the greater the false
alarm rate.

c) The speed of the algorithm is
approximately linear in the number of
thresholds used.

The probability of missing an object region
due to the omission of a single threshold
is the product of the probability that the
scene contains an object region and the
probability that the object region is dis-
cernible (by the algorithm) at exactly the
omitted threshold. Although knowledge of
the a priori probability is dependent on a
model for the scene (which does not at pre-
sent exist), experiments have demonstrated
that an object region which is discernible
at all by the algorithm can be extracted
over a range of thresholds -- dependent,
of course, on the steepness and homo-
geneity of the edge region bordering the
object. Noise regions, on the other hand,
do not tend to persist over a range of
gray level thresholds. This tradeoff may
therefore be posed as follows: By sampling
at every kth gray level, we reduce the
workload to a fraction (1/k) without
appreciably increasing the false dismissal
rate; however, we lose some redundancy in
the extracted data which would help us
discriminate object regions from false
alarms.

While one may conclude that the false
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alarm rate is a function of the input
window size, it is more reasonable to use
the window size to predict a upper bound.
The actual rate is a function of the num-
ber of thresholds and the positions of the
thresholds in the overall gray level
histogram. Experiments [11] in choosing
thresholds corresponding to minimum “busy-
ness" indicate that such thresholds gen-
erally correspond to valleys in bimodal
histograms. If, in general, a maximum
busyness threshold corresponds to a
histogram mode, and if high busyness at a
threshold predicts large numbers of
above-threshold components, then one may
conclude that certain thresholds are worse
than others in producing false alarms =--
specifically, those at or adjacent to
peaks in the histogram. The quantitative
aspect of these assertions is currently
under active investigation.

2.4 Object Validation

It is well known that the connected
components of a binary image can be iden-
tified in a single pass. During the
pass, many statistics pertaining to each
component can be gathered, including area,
central moments, shape and gray level
features. Of particular interest are
features relating to the validity of the
components; that is, whether the extract-
ed region really corresponds to an object
in the scene. If one considers validity
checking to be a classification process,
then one can compute a large number of
potential features and, using standard
techniques, come up with a discriminant
function. We have taken the point of
view that a good discriminant may be
obtained by designating heuristic con-
ditions which an object must satisfy and
then assigning one or more features to
each heuristic. We have established two
heuristics to be of value among the many
possible. One is that objects should be
"well-defined", i.e., have discernible
borders. Note that not all real-world
regions satisfy this constraint. For
example, in LANDSAT scenes, forests,
urban areas and clouds can blend irto
their surrounds with no discernible edge.
The second heuristic is that an object's
interior should "contrast" with its
surround. In this study, contrast is
based on gray level difference. However,
other local features including texture
measures are worth considering as defining
object interior. (This might require the
use of texture edge detectors as in [12]).
These two heuristics are fairly indepen-
dent, as will be demonstrated.

The two heuristics just described
were embodied in the algorithm as two
features. "Well definedness" of a region
was measured by the percentage of border
points which correspond spatially to
(match) actual edge points in the edge
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map. "Contrast" was measured by the of descriptors. In our work, the goal
absolute difference of average gray level was to classify the object regions which %
between the border region of the component passed through the filter. However, one
| and its interior. Figure 3 shows a can imagine using such regions to create
i scatter plot of these two features for the a "map" of a scene to be used for match- :
| regions extracted from a set of v_ndows. ing or_tracklng terrain views, for change 1
A reasonable discriminant appears to be: detection, or for "planning" in the sense
match > .5 and contrast > .6 -- i.e., at of artificial intelligence.
least 50% of the border matches the edge :
map, and the contrast is at least .6 gray 2.6 Algorithm

levels (out of 64). Note that neither
feature is by itself reliable enough to

FICORN VI

In summary, the algorithm for region
extraction consists of the following

discriminate noise regions from object re- steps: |

gions. Optimal discriminants may be com-~ g ] |

puted based on several models. Regardless 1. Smooth the image, if necessary |
3 of the particular model chosen, the dis- (to promote clean thresholding).

criminant value can be interpreted as a 2. Extract a thinned edge picture. |

"score" for the component. Components ’

with very low scores are discarded as pure 3. Determine a gray level range for

noise. In practice, we have used the thresholding.

match measure as a score for objects which 4. For each gray level in the range:

3 were above the pure noise threshold.

it ! ; a. Threshold the smoothed image.
The score is important in comparing

(nested) object regions corresponding to b. TLabel all connected regions
the same object. When an object is of above-threshold points.
thresholdable at gray levels tl >t2>--->tk, c. For each connected region:

this gives rise to k connected components, i. Compute the percentage

Ct < Ct g--w;Ct . Since each c, repre- of border points which

. 2 = = coincide with signifi-
ﬁents the same object, we cal} each an cant thinned edge points.
exemplar". In general, we wish to select =
a single exemplar as the best representa- ii. Compute the contrast of
tive of an object. The score provides a the region with the
criterion for selecting among exemplars. background.
Thus, one could choose the exemplar C, . iii. Classify the region as

3 ; g J object/non-object based
with the highest score. It is not always on the size, edge match

easy, however, to determine the nested and contrast.

sequence {Ct }. In particular, if an ]

i 5. Construct the canonical tree for
object thresholdable at gray level t is the set of object regions based
contained within an object thresholdable on containment.
at gray level t' < t, then regardless of 6. Prune the containment tree by

the comparative differences between the

- eliminating adjacent nodes which
two scores, we would want to retain Ct and are too similar.

Ct" This situation can be handled
by assuming that nested components whose 3. CONCLUSIONS
areas are sufficiently different (say, 50% This paper has investigated the prob-
change in size) correspond to different lem of image segmentation for scenes con-
(although nested) objects. In thermal sisting of object regions contrasting
images, this might correspond to a warm with a background. We have shown that
vehicle with a hot engine compartment, or evidence from multiple sources can be
to a vehicle on an asphalt road. In the combined to extract object regions while
first example, the relationship is based rejecting noise components. The extent
on "a part of"; in the second, it is based to which the different sources conform
on occlusion. The results of applying the defines a figure of merit for the regicn
algorithm to a moderate-size data base are which can be used to select a best ex-
illustrated iq Figure 4. emplar for a object.
2.5 Subsequent Processing BIBLIOGRAPHY

The foregoing algorithmic steps serve 1. A. Rosenfeld and A. C. Kak, Digital
as a filter which passes object regions Picture Processing, Academic Press,
that are deemed to be valid and that New York, 1976.
correspond to different objects. Each
object region can be described variously 2. J. S. Weszka, R. N. Nagel and A.
as a set of points with gray levels, as a Rosenfeld, A Threshold Selection

sequence of border points, or as a vector




A L T Py T S A s

62

Technique, IEEETC-23, 1974, 1322-1326.

3. J. N. Gupta and P. A. Wintz, Multi-
image modelling, TR-EE 74-24, Purdue
University, Lafayette, IN, Sept. 1974.

4. S. W. Zucker, Region growing: child-
hood and adolescence, CGIP 5, 1976,
382-399.

5. C. K. Chow and T. Kaneko, Automatic
boundary detection of the left ventri-
cle from cineangiograms, Comput. Bio-
med. Res. 5, 1972, 388-410.

6. L. S. Davis and A. Rosenfeld, Image
smoothing by selective iterative local
averaging (in preparation).

7. Algorithms and Hardware Technology for
Image Recognition, First Semi-Annual
Report, Computer Science Center, Univ.
of Maryland, College Pk., MD, October
1976.

8. Algorithms and Hardware Technology
for Image Recognition, First Quarterly
Report, Computer Science Center.
Univ. of Maryland, College Pk., MD,
July 1976.

9. R. Stefanelli and A. Rosenfeld, Some
parallel thinning algorithms for
digital pictures, J.ACM 18, 1971, 255~

264.
Figure la. Four windows (large tank,
10. L. S. Davis, An analysis of a simple small tank, truck, APC)
nonlinear edge detector (in prepar- thresholded at different gray
ation). levels.

11. J. S. keszka, Threshold evaluation
techniques (in preparation).

12 A. Rosenfeld, A nonlinear edge detect-
ion technique, Proc. IEEE 58, 1970,
814-816. Y

Figure lb. Edge map (thresholded to in- |
crease visibility))

i




Figure 1lc.

Figure 1d.

Edge map of Figure 1lb overlaid
on Figure la.

Object regions extracted by the
algorithm.
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Figure 2a. Noisy square.

Figure 2b. Noisy tank.

Figure 2c. Large tank.

Figure 2.

Row 1:

Row 2:

Row 3:

Object regions produced as a
result of image smoothing.
(Lighter object regions are
displayed within darker object
regions.)

Raw window, edge map, object re-
gions.

3x3 median filtered window, edge
map, object regions; 3x3 mean
filtered window, edge map, object
regions.

5x5 median filtered window, edge
map, object regions; 5x5 mean
filtered window, edge map, object
regions.




Figure 24.

Small tank.

Figure 2e. APC.
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Figure 3 Scatter diagram plotting edge/

border match against contrast
for a set of noise recions
(plotted as periods) and object
regions (plotted as hash marks).

Figure 4a. 16 tanks (the negative frame
was not processed).

Figure 4b. Edge maps (thresholded for
visibility).

Figure 4c. Object regions.

Figure 4. Object region extraction.




SEGMENTATION OF FLIR IMAGES BY PIXEL CLASSIFICATION

Durga P. Panda*
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ABSTRACT

Image segmentation can be treated as
a point-wise classification problem. This
classification may be done by measuring a
set of features at each point and defining
a decision surface in the feature space.
This report presents some experiments in
segmenting FLIR images by using the gray
level and the edge value at each point as
features.

1. INTRODUCTION

Two earlier reports [1, 2] have
analyzed the joint histogram of gray level
and edge value of FLIR images and have
suggested possible segmentation procedures
based on the analysis. The analysis in-
dicated that the histogram is trimodal,
two of the modes occurring at zero edge
value and the third one occurring at some
higher edge value and at a gray level be-
tween those of the first two. Some of the
segmentation procedures suggested in the
two reports [l, 2] are: thresholding
based on the histogram of gray levels
having low edge values; thresholding based
on the histogram for high edge values; and
valley seeking in the joint histogram.
(These methods are defined below.) The
present paper investigates the success of
these methods in segmenting FLIR images
into backgrounds and objects.

The segmentation procedure based on
the histogram of points having low edge
values (which will be referred to here as
the "L-method") finds the valley between
the modes in the histogram and uses the
location of that valley as the gray level
threshold for the image. The segmentation
grocedure based on the histogram of points

aving high edge values is referred to as
the "H-method"; it uses as threshold the
conditional mean or the conditional mode
of all pixels with edge value greater than
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a certain percentile, p, of the maximum
possible edge value. The quantity p is
taken to be 95; the heuristics leading to
this selection are discussed in detail in
a2k

Segmentation by valley seeking in the
joint histogram involves finding a
"bottommost" curve that separates one
mode from the others. As described in
[1, 2], two such curves are possible.
These two curves have a few common points
at low edge values and then diverge from
each other as edge value increases. Thus,
for a given edge value, one of the curves,
which we shall call "L", has gray levels
smaller than or equal to those on the
other curve, which we call “R". Either
of these curves may be used as a decision
surface in the two-dimensional space of
gray level and edge value, for classify-
ing the image points into the object and
background classes. The segmentation
procedure using valleys such as the curve
L or the curve R will be called the "V-
method". 1In particular, the method using
the curve R as the decision surface will
be called the "VR-method", and the method
based on the curve L will be called the
"VL-method".

The goal of the work reported here
was to investigate the usefulness of the
above methods as segmentation procedures
for FLIR images, and not necessarily to
automate these methods. For this reason
the valley selections were done manually.

2. EXPERIMENTS

Sixteen windows were selected from
the "NVL data base" (see [2]) as test
images. The images were 64x64 in size and
had grayscales of 0 to 63. Figure la
shows the 16 images. The identifiers of
these images, as given in [2], are shown
in Figure 1b.

Figure 2 shows the gray level histo-
grams of the images in Figure 1. Most of
these histograms do not possess strong
bimodality. Classically, images can be
segmented using thresholds located at
valley bottoms on their histograms. In




locating valleys on the histograms of
Figure 2, consideration was given to the
fact that the object points are much
brighter than the background points and
they are a small fraction of the total
number of points in the image. Thus, a
valley near the middle of the grayscale
range occupied by the histogram was given
less weight, or discarded as spurious,
compared to a valley much less prominent
but occurring near the light end of the
grayscale range. The results of seg-
menting the images of Figure 1 using
valleys found in this way on the histo-
grams in Figure 2 are shown in Figure 3.
As this figure shows, only a few of the
objects are extracted satisfactorily.

Figure 4 shows the joint (gray level,
edge value) histograms of the same images.
The horizontal direction represents gray
level and the vertical direction repre-
sents edge value. The brightness at each
point in a joint histogram represents the
number of pixels having the corresponding
gray level -nd edge value. The edge oper-
ator used i: the 4x4 DIFF operator of
Hayes and Rosenfeld [3]. The general
structure of these joint histograms in-
dicates that for low edge values there is
a clearly distinct valley (dark region)
separating a strong mode, corresponding to
the background region, from a weak mode,
corresponding to the object region.

Figure 5 shows the results of seg-
mentation by the L-method, in which the
gray level at the valley of the histogram
for edge value zero (a common point of
the curves L or R) is chosen as a thres-
hold. This method is more successful at
extracting the objects, but images with
faint objects have very small extracted
segments. In image 26R the histogram for
zero edge value had no valley, so that the
L-method yielded no extracted segment for
this image.

Figure 6 shows the result of segment-
ing the test images by the H-method, as
was done in [2]. For many of the test
images the objects are well segmented by
this method. However, for the images with
extremely faint objects the output of the
H-method is very noisy. The most undesir-
able results occur for the two images 38N
and 56N, where even though the images con-
tain no object, the H-method classifies
some regions as objects. This is due to
the fact that the threshold found by the
H-method is always within the grayscale
occupied by the image and hence it will
always yield some segmented regions in the
image regardless of whether or not the
image contains an object.

Figure 7a shows the test images seg-
mented by the VR-method, while Fiqure 7b
shows similar results for the VL-method.
It may be pointed out here that the V-
method of segmentation is based on the

concept that an image may contain pixels
belonging to three different classes, the
background, the object, and the object
boundary (see [2]). Pixels belonging to
the object boundary class are expected to
surround, in the image domain, the pixels
belonging to the object class; and are ex-
pected to have higher edge values than
those of the object or the background
pixels, in general. Since the curve R
separates the object pixels from both the
background pixels and boundary pixels,
using the curve R as the decision surface
will exclude the boundary points from the
segmented image. Comparison of Figure 6
with Figure 7a indicates that this is in-
deed true in general. However, for the
images containing very small and faint
objects, such as 57T, 58R, and 34A,. the
VR-method yields relatively noise-free
segments as compared to the H-method.

Also impressive is the result of the VR-
method for the last two non-target images,
38N and 56N, where the extracted segments
are empty. The two-dimensional histograms
of these images display no valley and
hence, in contrast with the H-method, the
extracted segments are empty. Conversely,
the curve L separates the background
pixels from both the objects and the
object boundaries. Thus using the curve

L as the decision surface will include in
the extracted segments the boundary points
that the VR-method excluded. As Figure 7b
shows, the extracted segments are larger
in the case of the VL-method than they are
in the case of the VR-method.

Figure 8 shows the result of using
a hybrid of the VR-method, the VL-method,
and the H-method as the segmentation pro-
cedure. This method classifies the pixels
using a decision surface constructed as
follows. For a given edge value, beginn-
ing with the edge value zero, if the two
curves L and R have a common gray level
then that (gray level, edge value) pair is
selected as a point on the decision sur-
face. As the edge value is increased, the
two curves will begin to depart from each
other at some point. For this and all
higher edge values, the threshold used is
the same as the threshold of the H-method.
In other words, for low edge values the
points on the decision surface are chosen
by the V-method, and for higher edge
values the points are chosen by the H-
method. Some of the extracted segments
that were very small in the VL-method are
relatively large in the VH-method.

An alternative to the VH-method
would be to classify the pixels by the
straight line S joining the threshold due
to the H-method at the 95th percentile
edge value with the threshold due to the
L-method at zero edge value. Figure 9
shows the results of segmenting the FLIR
images by this S-method. This method

does not follow the actual valley bottom




for the low edge values, and the results
are therefore somewhat inferior to those
obtained using the VH-method. The VH-
method yields the best result of all the
methods tested in this paper.

3. DISCUSSION AND CONCLUSIONS

It is evident that the two-dimension-~
al histogram enables us to extract better
objects from FLIR images than those ex-
tracted using the one-dimensional gray
level histogram. Several different de-
cision surfaces can be used in the two-
dimensional feature space, to give varied
degrees of success in segmentation. Among
all the methods considered, the VH-method
seems to give the best results (Figure 8).
A heuristic explanation for this is the
following. The background and the object
pixels away from the object boundary have
low edge values, and the histogram for
these pixels seems to have a distinct bi-
modality. Thus the valley between the two
modes successfully classifies such pixels
into the background class and the object
class. The pixels near the boundary, how-
ever, have higher edge values and do not
have this bimodality. Since some of these
points are from the object class and some
from the background class, the mean value
of such points may be expected to classify
the pixels successfully. The VH-method of
classification is effectively just that --
the low edge value points on the decision
curve are at the valleys of the correspond-
ing histograms, and the high edge value
points on the curve are at the mean of the
high edge value pixels.

The two-dimensional histograms some-
times resemble truncated or "folded over"
mixtures of two multi-variate normal dis-
tributions with unequal covariances. The
folding over, which occurs at the edge
value zero, may be due to the fact that
the edge value at each pixel is defined
as an absolute value of certain differ-
ences measured at that pixel. It is con-
ceivable that if somehow appropriate
signs, positive or negative, were incor-
porated into the edge value at each pixel,
the resultant distribution would be an
"unfolded" mixture of two multi-variate
normal distributions with unequal co-
variances. In such a case the maximum-
likelihood decision surface is quadratic.
Unfortunately, how to incorporate the
appropriate sign into the edge value at a
pixel is not obvious at present.

While the use of the edge value as an
additional feature has certainly improved
the results of pixel classification, it is
obvious that the edge value is not the only
feature that can be used for this purpose.
It is conceivable that there exist other
local properties that perform as well as
or better than the edge value. Further
studies of this approach to image segmen-
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tation would be desirable.
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Figure 1. The 16 test images.

(a)
(b)

The images.

The image names.
suffixes T, R, A,
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in the image is a
truck, an APC, or

target", respectively.

Figure 3. The image segments extracted
by finding valleys in the gray
level histograms of Figure 2.
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Figure 4. The two-dimensional histograms
of the test images.

Figure 2. The gray level histograms of
the test images.




Figure 5. The test images segmented by (a)
the L-method.

(b)
Figure 6. The test images segmented by Figure 7. The test images segmented by
the H-method. the VR- and the VL-methods.

a) The VR-method.
b) The VL-method.
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Figure 8. The test images segmented by
the VH-method.

Figure 9. The test images segmented by
the S-method.
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IMAGE SEGMENTATION USING TEXTURE AND GRAY LEVEL

S.G, Carlton and 0,R. Mitchell
Purdue University
W, Lafayette, Indiana 47907

INTRODUCT ION

The segmentation of an image can be a critical
first step in image information extraction [1].
Once an image is segmented, each section can be
classified using statistical or syntactic methods.
However, the segmentation of images has developed
into one of the more complex tasks in image pro-
cessing. This paper presents a hierarchical ap-
proach to segmentation using texture and gray
level measurements. This method has shown promis-
ing preliminary results.

THE BASIC TEXTURE MEASURE

Several approaches to the use of image tex-
ture information in image analysis have recently
been developed [2,3]. However, these techniques
have generally been applied to region classifica-
tion following segmentation and not to the seg-
mentation problem itself. In our approach to
represent texture, various sizes of local extrema
in the logarithm of the image are summed within a
window surrounding each point.

A. Local Extrema

In the work reported here, local extrema were
found by combining horizontal and vertical one-
dimensional operations. The one-dimensional oper-
ation scans a line of data and assigns a point to
be a local maximum (minimum) of size T if it is
the largest (smallest) value occurring in the
vicinity on the line before the values drop (rise)
to an amount T below (above) this maximum (minimum)
value [4]. An example is shown in Fig. i. The
local extrema of size 3 and size 1 are marked.
This process is equivalent to detecting the ex-
treme following a hysteresis smoothing operation
using a smoothing of T/2,

The logarithm operation is first performed on
the image prior to the extrema detection. The use
of this texture measure is a crude attempt to simu-
late the human visual system's response to a tex-
ture pattern. For example, each maximum in Fig. 1
would appear as a bright point to a human observer
even though one of them is below a minimum which
would appear dark to an observer, i.e., the local
surround affects perceived brightness much more
than the actual gray level [5].

A sample image is shown in Fig, 2. This is a
256x256 8-bit black and white aerial scene of a
military simulation area in New York State, The
local extrema measured in the logarithm version of

this image are shown in Fig. 3. Three threshold
values are shown as three intensities in the
picture (low, medium and high with the extra high
omitted). The horizontal and vertical extrema
have been combined.

B. Turning Texture to Gray Level

The next stage in our approach is to count the
number of each size extrema in a window centered
about each point. This results in a gray level
picture representation of a texture property., For
example, using a 4Ox40 window and three thresholds,
the three pictures in Figs, 4,5 and 6 were pro-
duced. Note that the forest region of the original
has few small extrema, many medium extrema, and
quite a few large extrema. The original image
was also averaged using the same 40x40 window to
produce a fourth picture, shown in Fig. 7, repre=-
senting the average gray level,

SEGMENTATION

We now have four pictures (or one 4-dimension-
al image) to be used for segmentation. Each
picture element is considered to be a 4-dimensional
vector. To accomplish segmentation, a starting
point in each separate segment of the image is
found. This is accomplished by finding local ex-
trema in each of the four windowed pictures of
section Il, Irn this operation a point must be a
local extrema in both the horizontal and vertical
directions to be chosen. This prevents the
location of starting points in transitional areas
between two regions. The starting point candi~-
dates are then compared using a four-dimensional
distance measure. Each group of similar candi-
dates, based on a threshold criterion, are merged
to produce an average vector representing that
group. The resulting average vectors form the
starting points for the segmentation. The
distance measure used indicates an approximate
percentage difference in each dimension:

. -1
i=1 A'+B|+K

where A is the intensity of one point in the image
and B is another. This measure is similar to

gray level contrast. The constant K allows for
decreasing the weight of a dimension in a region
where the total number of extrema is small and,
therefore the percentage difference is unreliable.
For a window size of LOx40 we used a K=25,




Once the final set of starting points is de-
termined, each point in the image, regardless of
its spatial location, is assigned to the closest
starting point using the distance measure de-
scribed above., This normally results in fairly
large contiguous regions due to the nature of the
earlier windowing operations. Results using this
technique on the image and intermediate steps pre-
sented in Figs. 2 through 7 are shown in Figs. 8
and 9. Fig. 8 results when a large distance
threshold criterion for similar starting point
vectors is used. The additional region .shown in
Fig. 9 was obtained by tightening this threshold.
The major regions extracted from the original
image are forest and two different grassy areas.

A simple by-product of this segmentation is
the region boundaries. A simple processing pro-
cedure on the segmentation output produces the
boundary image shown in Fig. 10. These bound-
aries are then shown overlaid on the original
images in Fig. 11.

HIERARCHICAL SEGMENTATION

The effects of the window size used in cre~
ating the averaged pictures in this procedure are
very important., The result of averaging an
image with a very large window can be expected to
smear all detail from the image. On the other
hand, averaging with a small window yields a
blurred image retaining much detail and perhaps
resulting only in the loss of troublesome noise.
In the subsequent proposition these effects of
the window size are exploited in a hierarchical
approach to the segmentation problem,

Using a comparatively large window 40x40
pixels, the 2 region pictures shown in Fig., 12
were obtained. By examining the averaged
pictures and the results, it is readily seen that
the fine detail has been lost, but the major
regions of the image have been preserved and in-
dicated. This first pass over the image then has
produced the major regions.

In the second level of the process, the orig-
inal extrema are averaged over a smaller window,
20x20 pixels. This smaller window is only 25%
of the size of the larger one. The starting
points are also regenerated using this newly av-
eraged pictures to form the L-dimensional vectors.
In addition to these inputs, the second level pro-
cess also utilizes the results of the first level.

The regions indicated by the first level, are
separately subdivided by the second level process
in the same manner as the first level divided the
entire image, The second level process holds the
major regions firmly in place, searching within
each region for finer detail,

An example of this second level segmentation
is shown in Fig, 13, Using the 2 region output
of the first level, the right hand region is
subdivided into three different regions, The
detail preserved at this level is indeed much
finer than produced at the first level, The
limitations imposed by the first level, however,

provide a spatial context within which the second
level may operate., The boundaries obtained are
shown on the original image in Fig. 14, The
brighter boundaries are those obtained in the
first level and those less bright are from the
second level process.

TECHNIQUE PARAMETER SENSITIVITY

There are several thresholds which must be
set to make this technique operative: extrema
sizes, window sizes, and distance similarity
criteria. However, if the input data is fairly
homogeneous (e.g., aerial photographs from a
constant altitude) the algorithm performs well
using fixed parameters. The algorithm is theo-
retically invariant to illumination level changes
and magnification if the window sizes used are
appropriate to the size regions to be detected.

ALGORITHM IMPLEMENTATION

The one-dimensional extrema detection algo-
rithm is easily implemented in a line-at-a-time
digital processor. The picture is presently
transposed and the process repeated to obtain the
vertical extrema, It is feasible to implement a
two-dimensional version of this algorithm using
CCD transversal filter technology which would
output extrema sequentially in real time and
eliminate the time consuming transposition.

The smoothing operations described are im=-
plementable digitally, optically, ar with CCD
devices. Thus the overall segmentation system
could be implemented for very fast image process-
ing rates,

SEGMENTATION OF TACTICAL TARGETS IN FLIR IMAGERY

A second type of image data and processing
requirement will now be presented, The forward
looking infrared (FLIR) imagery as shown in
Fig. 15 was obtained from Honeywell as part of
our joint project in improving FLIR tactical
target detection and recognition. One method of
good promise in recognition of such objects in-
volves measuring parameters on projections
through the object in various directions. This
type of structure recognition method was developed
by New Mexico State University for missile track-
ing at the White Sands Missile Range [6]. It has
the advantage that the high amount of noise and
distortion present in thermal imagery is reduced
by the integrating process of the projections.

Typical projection data is shown in Fig. 16.
This shows projections through eight angles of
Fig. 15(b). The circles and numbers at the
bottom of each projection indicate the locations
of intervals containing 10% of the total area
above the background level, Ratios of these
numbers can then be used in classification of the
object, However, this method fails when the
background level is comparable or higher than the
target intensities. For this reason the target
must be segmented from the background before the
projections are done.
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It is usually a relatively easy task to locate
at least one portion of a potential target by
looking for intensities significantly different
from the background. For active vehicles a motor
"hot spot'' is usually prominent. The segmenta-
tion proposed here assumes that the target has
been located and only its extent must be
determined.

To accomplish target segmentation, background
statistics are gathered over an annular region
outside the target region. Then the statistics
of the target region are compared to those of
the background and points not comparable to those
in the background are labeled as target points. Elpure L awele aray Inies oM iamy foc artrems

Local extrema of size |
and slze 3 are indicated.

For some targets, intensity level alone can
be used as shown in Fig. 17. However, in
others it is helpful to include neighborhood
varinace information as well as gray level or
the joint statistics of adjacent points such as
was done in Fig, 18, Some targets such as
Fig. 15(d), did not respond to any simple sta-

g tistical measures. In this case the target gray
level, variance, and 2nd order density functions
were compsrable in the background and target.
However. the max-min texture method described

in th's paper did show promise. Shown in Fig, 19
are the vertical extrema associated with Fig.
15(d). Fig. 20 shows the 10x10 average over
extrema of medium level. The averaged extrema
picture was used in conjunction with the original
picture to form a 2-dimensional data vector at
each point. The points in the image which now

: are not common with the background are indicated
3 in Fig. 21, Note that the tank is almost com=-
pletely segmented.
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Fig. 3. 3 levels of extrema displayed in
different intensities.




Fig. 4. Average low level extrema using a Fig. 7. Average gray level using a 40x40
40x40 window. window centered at each point,

Fig. 5. Average medium level extrema using Fig. 8. Results of the segmentation procedure
a 40xL40 window centered at each point. with loose threshold criterion on

starting points

Fig. 9. Results of the segmentation procedure
Fig. 6. Average high level extrema using a with a tight criterion on starting
LOx40 window centered at each point, point generation.




Fig. 10. Image boundaries produced from the Fig. 13. Output from the second level process
segmentation output, showing subdividion of the maj., region.

Fig. 11. Image boundaries overlaid on the Fig. 14. Results overlaid on the orig. picture.

original image.

Fig. 15(a) Typical FLIR data. (91x91) 6=bit
Fig. 12. Two region image used as input to the picture elements.
second level of the hierarchial process. Tank from close range overhead.




Fig. 15(b) Same tank as in (a) but from Fig. 16. Projections through 8 angles of
further away. Fig. 15(b).

Fig. 17. Segmentation of Fig. 15(b) using back-
Fig. 15(c) Typical FLIR data (91x91) 6-bit ground intensity information only.
picture elements. Truck

Ty al FLIR data (91x91) 6=bit

re elements. Tank

Fig. 18, Target segmentation of Fig. 15(c)
usinyg joint statistics of adjacent
points in the background.
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Fig. 19. Vertical max-min extrema for
Fig. 15(d).

Fig. 20. Average over a 10x10 window of the
medium level extrema in Fig. 19.

Fig. 21, Target segmentation of Fig, 15(d)
using intensity and texture of the
background.
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SYMBOLIC ANALYSIS OF IMAGES USING PROTOTYPE SIMILARITY
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ABSTRACT

The prototype similarity transformation is a
method for transforming an image into a set of sym-
bols, each of which represents the relationship of
a local region to other parts of the image. The
relationships that have been investigated are a
class of similarity relations invariant under tex-
ture changes. Spatial information was not used to
determine similarity. Previous work showed that
the images were recognizable when the intensities
were replaced by the symbols. The current work
deals with the problem of simplifying the symbol
set in such a way that desired components of the
image (e.g., target objects, edges, background) are
revealed. A way is given to infer a transformation-
al grammar from the (non-spatial) symbolic content
of the image. The purpose of this grammar is to
generate a simplified symbol set wherein targets,
background areas and separating boundaries are each
denoted by a separate symbol. The method has been
successful in segmenting FLIR imagery.

I. INTRODUCTION

Symbolic image processing begins by extracting
symbolic primitives from the numeric representation
of the image and then working in the symbol space.
lhe goal of symbolic image processing is to deter-
mine the content of the image from the structures
revealed by the primitives. The problems in
symbolic processing are:

(] to extract the primitives, and
[] to discover appropriate structural rela-
tionships among the primitives.

Image primitives are usually defined in terms of
required spatial properties of the numeric values.
Thus, there is a hierarchy of primitives ranging
from edges and contours at the low level to trees
and houses at the high level, ordered by the com-
plexity of the spatial properties.

The method discussed in this paper approaches
the primitive extraction problem from a different
direction. A collection of symbols is derived from
the image by means of a similarity relation defined
on pairs of image segments. Spatial and textural
properties of the image are deliberately excluded
from consideration during the symbol generation
process. Image primitives are then derived from
the symbols, starting with a kmown target segment
and a known non-target segment. Relational graphs
are constructed on each of the known segments by

linking similar symbols. The relational graphs
yield the simple image primitives

T - the set of symbols linked only to the
target segments,

B - the set of symbols linked only to the
non-target segments, and

E - the set of symbols linked to both elements

By this association with declared target and
non-target (or background) segments of the image,
the symbols thus acquire meanings: T = Target and
B = Background. The E symbol, since it associates
with both target and background is given the mean-
ing: E = edge. Replacing the numerical values in
each segment with these symbols gives the trans-
formed image.

The preceding example illustrates the kinds
of operations used in the similarity transformation.
The significant points, which are expanded in
sections II and III are:

[ The numerical values (intensities) are
used only in testing similarity of pairs
of segments.

® The segments are coded to show how they
are similar to other segments.

] Semantic cues, in the form of designating
a known target segment and a known back-
ground segment, are used to guide the
final symbol generation.

(] The spatial arrangement of the segments
does not enter into the symbol generation.

The symbols, which are the image primitives
for later analysis of the image content, are thus
derived by a process that uses a minimum number of
a priori conditions. The utility of the method
can be evaluated by how well it helps in determin-
ing the content of the image.

The detailed discussion in Section III de-
scribes the general procedure that generates symbols
representing different kinds of target, background
and edge regions in one image. Section IV shows
the results of using the prototype similarity trans-
formation to segment FLIR imagery into target,
background and edge regions.

II. PROTOTYPE SIMILARITY TRANSFORMATION

The basic symbols used to represent the image
are generated from the image intensity values by
the following method. The entire image is parti-
tioned into 4 pel x 4 pel cells. A similarity




relation (a symmetric, reflexive binary relation)
is defined for pairs of cells and used to select

a set of distinguished cells called prototypes*.
The defining properties of the prototypes are :
(1) they are mutually dissimilar and (2) all non-
prototype cells are similar to at least one proto-
type. Each cell is then transformed by replacing
the numerical intensities with the list of proto-
types that are similar to the cell. The prototype
lists are called "labels" and are the basic symbols
used by the prototype similarity method. The only
intensity characteristics retained in the labels
are those used to define the similarity relation,
but this is enough information to allow comparing
the cells by comparing their labels.

III. TINFERRING THE TRANSFORMATIONAL GRAMMAR

The meaning of the labels is determined by a
two step process:

® Infer the meaning of each prototype from
the semantic cues provided by the declar-
ed prototypes and the collection of labels
occurring in the given image.

@ Interpret the meaning of each label by
using the meaning of it's constituent
prototypes.

Inferring Prototype Meaning

The label of a cell C is a list of those proto-
types that are similar to the cell C. When two
prototypes occur together in a label it indicates a
relationship between them. Prototype meaning is
inferred by tracing this relationship back to the
declared prototypes. For the following discussion
let P1 be the declared target prototype and Pz be

the declared background prototype. Let P3, e, PN
be the discovered prototypes.

Define Ay = the set of labels that contain Pi

L; = the set of prototypes in Ay

L; is called a "linking" set and is the set of all

prototypes related to or linked directly to proto-
type Pi' We assume that linking sets containing

only one prototype have been removed and that Pz ¢
Ll‘ The inference proceeds as follows:
tee ol = Ly,

choose Py ¢ il , form nz = nl\, Lj

: =2 3 2 )
choose Pj, ¢ 1" , form n° = 1%, Ljp » etc.
continue until T = ¢ .

The linking sets Ll‘ Los Ligs e Ljn contain the
information from which prototype meanings will be

inferred.

*The similarity relation used in this work compares
two cells by comparing the ratio of means, the
ratio of standard deviations and the correlation
coefficient of the ordered intensities to unity.

Index set notation will be used to simplify
the following discussion. Let J = {Z.jl. cees Jpke

Also define Lij = Lj @ Lj, Lij = Lj O Ty, etc.

If L1j # ¢ then the prototypes in L1j are like
both Py and Pj. These are designated as edges
between the target and whatever Pj may represent.
Let K< J be those index values j for which L1j# ¢
and let ¢ =Y L1j. Define LI =Ly - ¢. The
prototypes in L; are the ones that are like the
designated target but are not edges. We designate
these as targets.

The prototypes in LIj are not like the declar-

ed target and the next step is to infer meaning for
them. Continuing with the idea of using semantic
cues to guide the inference process, we consider
the declared background prototype P, and its link-

ing set L2. The subset L12 c L2 has already been

designated as the target/background edge, leaving
only LIZ to guide the inference. Thus we attempt

to find chains of sets Lij that overlap and join
to LIZ.

Let zl = LIZ
choose i, such that Lz, 0 gl ¢ $
1 111

form 1% = 21\) L{4
1

choose i, such that L3, N zz o,
2 112

fom 23 = 2% | i3, . etc.
2

continuing until ¥ N Li; = ¢ for all

remaining i.

The prototypes in t" are linked to the declared
bacgground and we designate these as background.

= r- -
pefine R {2,115 <oy i}, then 1 ‘a Llj .

At this point three different sets of proto-
types have been given meanings:
*

L1 ~ target

¢ = edges

g - background
If all prototypes are included in these sets then
the inference process stops. If not, then meanings
are inferred for the remaining prototypes by using
the edges Llj of those Lij not in z'. Thus:

for i ¢ J - R,




designate Lii as target type i

i n =
if Lli Llr ¢ for all r e R,
designate Lii as background type i

3 n
if Lli Llr # ¢ for some r ¢ R.

Interpreting the Labels

The prototypes have the meanings given them by
the sets L;, z", etc. Label meanings are inferred

from the prototype meanings by the following process.

Each prototype P is replaced by a character denot-
ing the set to which it belongs:

*
Pe L1 it
Pezl B
) 5 replace P with
Peo E
P e Lij Tj or Bj e

This changes the label into a string of characters.
The label's meaning is obtained by using a rewriting
rule to reduce the string to a single character.

The rule replaces character pairs according ta:

TT-T, EE~E, BB-»B, TB-+E, TE+T, BE-B

ignoring permutations and subscripts. The rule is
applied repeatedly until only one character remains.

IV. RESULTS

To use the Prototype Similarity (PS) method in
a tactical application, a target detection device
such as the Honeywell Autoscreener locates the
target and points to a location in the target image.
A second image location outside of the target is
also chosen. These two image points are the seman-
tic cues used in the grammatical inference. The PS
method can thus be used to extract the total target
sub-image or to find other similar objects in the
ijmage. Figures 1 and 2 show the results of using
the PS method in these two ways to extract objects
from airborne FLIR imagery.

Figures la - 1d show the analysis of a truck
image. For this analysis the part of the frame used
is 60 pels high and 80 pels wide. This is subdivid-
ed into non-overlapping 4 pel by 4 pel cells. One
target cell and one background cell were declared
in the positions shown in Figure la and the PS
method genera;es the symbolic representation shown
in Figure 1b.

*Note that the direction of the horizontal axis is
reversed in Figures 1b, 2c, and 2d.

80

The details of this analysis are as follows:
Sixteen prototypes were discovered in the image.
Three of these (shown by the letter Z) were removed
because they were not linked to other prototypes.
The inference process determined that five symbols
(T, 0, A, B, E) would describe the picture. The
meanings for these symbols (as described in section
111) are E - edges between the target and the back-
ground, B - background areas, T - areas like the
declared target cell, and O, A - target-like areas
that differed from the declared target cell.

Figures 1lc and 1d respectively show the non-
background and the background parts of the picture
(the mask is displaced 4 pels vertically for this
display). It is noteworthy that the extracted
truck image includes the low intensity parts of the
image that corresponds to the front and rear wheels.

Referring again to Figure 1lb, the declared
prototype T was at row 6 and column 13 and corres-
ponds to the right door of the truck. The sides of
the truck and top of the cab are the parts of the
truck also marked with a T. The symbols 0 and A
were identified as target-like but different from
T. These appear in the locations corresponding to
the motor and the top of the box. The E symbol is
associated mainly with the tandem real wheels.
Future studies will investigate whether target
image segmentation of this type is good enough to
recognize targets from the symbolic image structure.

Figures 2a - 2d show the analysis of a full
image frame (480 x 440 pels). Figure 2a is the
original FLIR image taken from an altitude of 3500
feet. The horizon is just above the top of the
picture. A number of unidentified far away bright
objects appear in the upper half of the picture.

The wide 1ight band across the lower part of the
picture is a warm river. In front of this are
scattered houses (bright) and columns of trees (dark)
To analyze this picture, two target prototypes were
declared at the positions marked T (on the river)
and 0 (on one of the houses). The background proto-
type position is marked B. The results of the PS
analysis was that a total of 27 prototypes (declar-
ed and discovered) were generated and these reduced
to four symbols T, 0, B, and E. T, 0, and B have
the declared meanings and E means edges.

Figure 2b shows the picture with all 0 cells
removed (the mask is offset). This symbol not only
marks the houses in the foreground and background,
but it also delineates a large part of the river's
edge. Analysis of the image intensities suggests
that this is a result of banding in the house image
and could be removed by using a texture measure if
so desired. The right hand end of the river is also
labelled with the 0 symbol. This is due to the
combined effects of the banding and DC bias errors
along the scan lines in the original FLIR output.
Image intensity equalization will remcve this
effect.

Figure 2c shows the Tocations of the O symbols in a
computer listing of the symbolic image. Figure 2d
shows the T symbols. These successfully mark the
end of the river at which the T prototype was de-
clared, but do not extend into the other end where




the texture and intensity are very different. In
its present form the PS method uses no spatial or
textural information. As a result the method is
sensitive to sensor caused distortions, like the
DC bias problem in Figure 2a, that change the
quality of the imagery from point to point in the
picture. Improvements in sensors and developments
in image enhancement methods promise more uniform
quality imagery. It is also possible to decrease
the sensitivity of the PS method to these distor-
tions by including spatial analysis in the
grammatical inference.

Er——

Figure la. Original FLIR sub-image of truck.
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Figure 1b.

ymbolic image of truck (B-background;
» A, 0 - target; E - edges).

— W

X
Figure 2a. Original FLIR image showing houses,
trees, and river.
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Figure lc.

_Figure 1d.

X
Figure 2b.

Target parts of la.

X
Background parts of la.

FLIR image with building-like cells
removed (The mask is offset 12 pels
horizontally).
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SYSTEM SUPPORT FOR A DISTRIBUTED IMAGE UNDERSTANDING PROGRAM

Jerome A. Feldman and Richard F. Rashid

Computer Science Department
The University of Rochester

A distributed processing system for image
analysis is being developed. Some of the issues
under consideration are:

- inter-process communication and flow
control;
- programming methodology in a distri-
buted environment;
effective user control of simultane-
ous processes;
- protocols for image analysis.

An overview of the effort and its current state
will be discussed.

1. INTRODUCTION

In the past two years we have mounted a sig-
nificant effort to develop the tools and expertise
necessary for the construction of large distribu-
ted systems. This research has taken three
directions:

(1) the design and implementation of an
operating system based on inter-process
communication (RIG);

(2) the development of a programming method-
ology for distributed computing (PLITS);

(3) the construction of software facilities
allowing researchers to manage and inter-
act with a number of simultaneous pro-
cesses executing on different processors
in a network (NEXUS).

These projects have already reached the stage in
which they are being routinely used by researchers
and students and we have begun to turn our atten-
tion to a specific problem domain, that of distri-
buted image analysis.

2. RIG--ROCHESTER'S INTELLIGENT GATEWAY

RIG has provided us with a great deal of
practical experience in the construction and
behavior of distributed systems. The RIG system
consists of four 64KW minicomputers (intended
primarily for stand-alone use and possessing local

disk storage and high resolution raster displays)
connected in a 3 MHz ring network to a Data
General Eclipse. The Eclipse maintains a modest-
1y large local file capacity &100 MB), hard copy
printing and plotting, and.magnetic tape. It
also provides editing and other facilities to a
number of local terminals, and serves as a gate-
way between larger campus machines (360/65 and
KL-10), the Arpanet (as a VDH), and our local
network.

From the beginning of our project we wanted
the central Eclipse to perform three distinct
tasks. First of all we wanted to provide our
local network of minicomputers with access to the
greater storage capacity and I/0 capability of
the Eclipse. We also needed a consistent commu-
nication link between any point in our total
system (local minis or campus computers) and any
other point. Lastly we wanted to provide users
(whether they were connected via terminals to
the Eclipse, time-sharing users on the KL-10, or
stand-alone users of our minis) with intelligent
access to all available facilities, including the
various resources of the Arpanet.

To satisfy these goals we designed and imple-
mented a virtual memory operating system called
"Aleph" for our central Eclipse. Aleph is based
on the concept of inter-process communication.

The operating system kernel provides only the
necessary framework for interrupt handling,
virtual memory management, scheduling and inter-
process communication. All other system functions
have been allocated to a large number of indepen-
dent communicating processes each with its own
virtual address space.

Aleph's inter-process communication facili-
ties were based on ideas that have been proposed
by many (see for example [Walden, 72]), as well
as on our own practical experience with the
Stanford Hand-Eye system [Feldman & Sproull, 71].
Each Aleph process may have up to 255 full-duplex
"ports" for communication with other processes.
System primitives allow processes to receive
messages from all, one, or a set of ports. When
more than one message is waiting on a set of
ports, the receiving process may assign priorities
which order the messages it will receive. If
desired, a process may specify that it will




receive only messages coming from a particular
sender. All messages are queued; but a measure
of flow control is achieved by restricting the
size of a port queue. When a process sends a
message to a process-port whose queue is full,
that process is either suspended until a place is
opened in the queue by the receiver or, option-
ally, the sender is notified that the system was
unable to send the message. A fuller account can
be found in [Ball et al., 76].

0f crucial importance to our success in
using Aleph as the RIG gateway is the fact that
processes do not, in general, share memory or
variables. Because of this, they can be easily
accessed by other computers on our local network
through an aliasing facility which allows external
processes to appear local to an Aleph process.
We have devised a network communication protocol
around the same inter-process communication faci-
lities available in Aleph [Rashid, 76]. Using
this protocol, any process on any machine in the
system may communicate with processes in the cen-
tral Eclipse as though it were physically resi-
dent. Thus all network machines have full access
to Eclipse facilities.

Interestingly enough, because all communi-
cation is in the form of messages, there need be
no particular importance attached to the physical
location of a functional module in the system.
Part of the communication protocol includes a
symbolic name service which provides processes
throughout the network with dynamic information
about the location of functional modules in the
system. This permits the addition of a second
processor to the gateway (an event which should
in fact take place within the next month) without
causing confusion to the rest of the system. It
also means that some of our more prodigious
efforts in the area of intelligent resource man-
agement, etc. can be developed in very high level
languages on our KL-10 and still be tested as an
integral part of the RIG system.

2. PLITS--THE PROGRAMMING LANGUAGE IN THE SKY

Following the design of RIG and in the light
of its ongoing implementation, we began work on
a project to develop a non-trivially new program-
ming language for distributed computing. Despite
a decade of effort and a massive investment of
money and time, there has been relatively little
progress in distributed computing. Although many
low-1evel problems have been solved, there is
essentially no use of multiple machines on a sin-
gle task. It is possible that one reason for this
is the lack of an appropriate set of conventions
for programming a computation that is distributed
among several systems.

A description of our current ideas on PLITS
can be found in [Feldman, 77]. A preliminary ver-
sion has been running for almost a year, and is
being extended to multiple machines and languages.
Our experience with RIG and an initial implementa-
tion of PLITS as an extension to the SAIL [Van-
Lehn, 73] language have given us confidence that
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it answers at least some of the questions regard-
ing the construction of distributed programs in
image analysis and other areas.

3. NEXUS--THE PROGRAMMER AT THE HUB OF THE
UNIVERSE

One of the goals of RIG was that it give
intelligent aid to a user in his access to net-
work resources. As a first step in that
direction a powerful gateway should allow the
user to manage and interact with a number of net-
work processes simultaneously. NEXUS was devised
both as an example of what might be done along
these lines and as a useful research tool in -its
own right.

NEXUS was implemented as a programming
environment for our stand-alone minicomputer. It
provides inter-process, inter-machine communica-
tion in much the same manner as Aleph. More
importantly from the user's standpoint, it pro-
vides a virtual user input/output system. An
invisible process, controllable through special
keys, multiplexes user input to the various run-
ning processes and the output of these processes
can be displayed in various "windows" of the
minicomputer's raster display. Over 75 lines
can be displayed on a screen, allowing as many
as half a dozen reasonably-sized windows to be
displayed at a time. Processes running under
NEXUS communicate with themselves, with Eclipse
processes, and through the Eclipse with the Arpa-
net and local KL-10.

Some of the capabilities of NEXUS include
Arpa Telnet and FTP, telnet to the campus KL-10,
access to Eclipse files and I/0 devices, an image
display package, and a network file manager. An
example of a typical session with NEXUS is given
in Figure 1. A similar set of capabilities,
although limited by the small (~25) number of
lines displayable on a standard CRT, has been
implemented for the terminal users of the central
Eclipse [Ball et al., 76].

4. [IMAGE PROTOCOLS

RIG, PLITS, and NEXUS provide some of the
system support necessary for distributed image
analysis. One way in which we have used these
tools is in the development of a network image
protocol.

The Rochester Image Protocol [Maleson,
Nabielsky and Rashid, 771 exists within the RIG/
NEXUS framework and governs communication between
image handling processes in our network. It is
built around the concept of a structured image
definition similar in spirit to the structured
graphics display files of [Sproull, 74]. This
image data structure serves both as a common
language for describing images and as a uniform
way of specifying the display of image data on
various raster devices (e.g., plotting devices,
black & white and color variable intensity and
simnle intensity displays).
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The protocol presupposes the existence of a
distributed file system (supported by RIG) and
makes use of sophisticated headers to describe
the format of image files. Where user interaction
(both keyboard and graphic) is required, the pro-
tocol also specifies a mechanism for arbitrating
between the input requirements of competing
processes similar in form to that used by NEXUS.

A full report on the protocol and our initial
experience with it is in preparation.
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AUTOMATIC TARGET CUEING ON THE FOCAL PLANE

Thomas J. Willett
Nathan Bluzer

Westinghouse Systems Development Division, Baltimore

ABSTRACT

Under contract to University of Maryland,
Westinghouse has been implementing algorithms for
use in the target cueing process on the focal
plane of imaging sensors. The program is
sponsored by DARPA, and monitored by the Army's
Night Vision Laboratory. It has resulted in an
examination of the latest advances in CCD tech-
nology and led to the design of innovative -
structures which require very small chip areas.

We first describe a preferred set of algo-
rithms developed by Maryland which tentatively
comprises the first portion of a cueing system.
In general, the Median Filter acts to suppress
noise. The Gradient Operator extracts edges; the
width of these edges is reduced by the Non-
Maximum Suppression Algorithm.

The Median Filter is the first algorithm per-
formed and acts to extract the median gray level
from a 5 x 5 array of pixels and to place that
median value in the center of the 5 x 5. The
median value 1s defined as the 13th gray level in
an ordering of the 25 gray levels by magnitude,
counting from either end. The Median Filter acts
as a moving 5 x 5 window across the image in that
having obtained a median value, the first column
is dropped and a sixth column is added with the
accompanying reordering to obtain a new median
value.

The Gradient Operator Algorithm computes edges
based on an image of median values; it computes
an operator, OP = max z\A-B‘, |c-D|] based on
four overlapping regions A,B,C,D each of which
consists of 4 x 4 pixels and are arranged in the
shape of a cross. The quantities A,B,C,D, in the
expression, represent the sum of all sixteen
pixels within each region. The operator OP works
as a moving window in that the leftmost column is
removed from each region and the next right column
is added to each. Again, the operator result is
placed in the center pixel location.

The Gradient Operator extracts edges in either
the horizontal or vertical direction; the Non~
Maximum Suppression Algorithm then looks in a
direction perpendicular to the edge for a larger
gradient. If a larger value cannot be found, the
edge under consideration is retained; the edge is
removed if a larger value is found. The neighbor-
hood around the gradient under consideration is

an approximate 3 x 3 on each side.

The Median Filter, Gradient Operato:r, and
Non Maximum Suppression Algorithms are calculated
for a small window which moves over the entire
frame. The window height is 5 lines, 8 lines,
and 7 lines of image respectively for each of
the algorithms which are performed sequentially.
Consider, now, how these lines can be obtained
from the image.

We assume that the focal plane has a time
delay integration (TDI) feature such that the
image is available one line at a time from the
focal plane. The pixels within each line arrive
in parallel and are then shifted out serially
into a serpentine delay. For the Median Filter,
the serpentine delay comprises 5 image lines.
There are non-destructive taps placed strategi-
cally in the serpentine such that as the 5 lines
are shifted through the serpentine they are
tapped to form a 5 x 5 moving window. The same
sort of serpentine structure will be used for
the Gradient Operator and Non-Maximum Suppression
Algorithms with 8 lines and 7 lines respectively.
Since the algorithms are performed sequentially,
the chip area below the focal plane is composed
of a 5 stage serpentine delay, a Median Filter,
a 8 stage serpentine delay, a Gradient Operator,
a 7 stage serpentine delay, and a Non-Maximum
Suppression Algorithm.

It appears that the computation speed of
the algorithms will be in the neighborhood of
100 KHZ, hence a parallel organization is neces-
sary for a 1 megapixel/sec. data rate. Suppose
we divide the PI/SO register immediately below
the focal plane into ten vertical sections each
approximately 68 pixels wide and each with its
own serpentine CCD delay line. If the image is
640 pixels wide, we divide the register into ten
sections of approximately 68 pixels each to avoid
problems associated with calculations along the
edges. However if we do this segmentation to
achieve the data rate, there will be 20 x 68
shifts per column. At a clock frequency of 100
KHZ, numerical degradation in the order of 20%
will occur, which is too high.

The modulation transfer function is a
function of the input signal frequency, the
frequency of shifts (clock frequency), the
number of shifts and the transfer efficiency.

The more practical avenues of reduction are clock
frequency and the number of shifts; we can double




the number of operators to 20 each, and halve the
clock frequency and number of shifts to 50 KHZ

and 680, respectively. This may produce an im-
provement to 107 degradation but this number
would have to be confirmed experimentally. Of
course this approach increases the total chip

area which is still small and the external
clocking circuitry. Operating at cryogenic
temperatures will probably increase the transfer
efficiency somewhat. Moreover, surface channel
CCD's are suitable for this task and the advantage
of these devices is realizing the non-destructive
taps.
memory 680 elements long is 1000 square mils if
four phase clocking is employed. Hence for 20
columns we will require a silicon area 1000 mils
long by 20 rils wide.

The size of the Gradient Operator chip will
be deduced by assigning real estate to each
operation performed by the Operator. A key
operation is the absolute subtraction module
(ASM) which obtains the absolute difference be-
tween two inputs and yields a charge representing
that quantity. Each difference CCD structure
will nominally require a channel 1.2 mils wide;
four input channels are needed to provide four
charge packets, two representing IA-B] and two
representing C—Dl. The length of each ASM will
be 4 mils, a size sufficient to provide a read-
out structure necessary to drive the second
stage of the Operator. The second stage selects
which output IA—BI or ]C—D| is the largest
gradient of the ith pixel location. Combining
the real estate requirement for the first and
second stages, we calculate a chip size of 8 mils
x 10 mils. We assume a four phase gate con-
struction; a smaller number of phases (which re-
quires less chip area) could be used; however,
speed - charge handling capacity and ease of
fabrication favors four phase construction. The
structure advocated is exclusively based on MOS
FET and CCD technology. Both MOS FET and CCD
structures exhibit improved performance at
cryogenic temperatures greater than 30°K. Fabri-
cation yields should be in the neighborhood of
50% and power consumption less than 10 milliwatts.

The Median Filter chip will operate on 25
pixels located within a moving window; provisions
for obtaining the 25 pixels will be built into
the CCD serpentine delay structure in the form
of non-destructive readouts. Each data element
(pixel) 1is assumed to have a dynamic range equiva=
lent to a 32 level gray scale.

The size of the chip is determined primarily
by the number of pixels and gray levels. The
proposed MFO is required to operate as 2 moving
window device which requires a CCD memory capable
of storing and shifting 25 data elements each of
which 1s quantized within a 32 level gray scale.

A bank of CCD memory registers with 25 x 32
storage locations can be achieved by a 64 mil by
64 mil module. Included in this estimate are

areas for incorporating output and input structures

to the CCD memory.

The size required for achieving a serpentine
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Another major block of the MFO is the
sorting module in which the data elements are
arranged according to size. This requires a
bank of 32 CCD shift registers which are 25
elements long and each row is capable of being
independently shifted left or right. An area of
100 mils wide by 64 mils long is sufficient.

Finally the area required for controlling
the clocks operating the sorting module is esti-
mated to be 100 mils by 2 mils.

Summing the different component areas com-
prising the MFO, we arrive at an area estimate of
100 mils x 128 mils.

All the elements used in modeling the MFO
are based on field effect phenomena, hence we
expect improved performance of cryogenic temper-
atures in accordance with experimental obser-
vations. Power requirements are less than 100
milliwatts at 100 KHZ.

Assuming that the focal plane is divided
into 20 columns, the geometric area for the
Median Filter, Gradient Operator, and associated
serpentine delays, including the delay for the
Non-Maximum Suppression Algorithm, is 1 inch x
1/2 inch.
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CCD IMAGE PROCESSING CIRCUITRY

Graham R. Nudd

Hughes Research Laboratories, Malibu, California

ABSTRACT

The rapid development in charge transfer and
MOS technology allow highly complex circuit func-
tions to be built in a single integrated circuit
capable of operating at speeds in excess of
10 MHz. This paper describes the development of
n-channel MOS circuitry for real time (equivalent
to TV) implementation of selected algorithms:
including edge detection, using the Sobel operator,
and unsharp masking. Particular emphasis
directed toward establishing the feasibility of per-
forming two dimensional and nonlinear operations
in the analog domain and maintaining an accuracy
equivalent to 6 to 8 bits. The circuits described
typically occupy a few hundred mil“ on the silicon
surface and hence offer great potential for both
highly parallel operation and integration with the
newly developed imagers.

I. INTRODUCTION

Until relatively recently the computational
complexity of most image processing algorithms
prohibited the effective use of integrated circuits
(ICs) to process to data. However, the rapid
progress in technologies such as charge transfer
devices and metal oxide semiconductors (MOS)
with inherently low power-delay products has
resulted in a very significant increase in the cir-
cuit complexity permissible in a single IC. (The
hand calculator and single-chip micro-processors
are commercial examples of these developments.)
Charge coupled devices (CCDs) are particularly
significant to image processing since they can be
employed both in the image detection and process-
ing. Further, they can be configured to provide
an especially simple and direct means of per-
forming two dimensional convolutions, which form
the basis of much low-level image processing.
The Sobel edge detection circuit, described below,
is an example of this, Finally, the extremely high
packing density of CCD and MOS circuitry allows
many circuits to be used in parallel to provide
an area processor as shown schematically in
Fig. 1. Here a CCD imager or analog store is

used to store a full frame, and the data from the
N rows are clocked out in parallel into N paraliel
processing circuits. Each circuit might perform
the Sobel operator, for example, and process the
data for an entire line, with the processed output
appearing at the clock rate f, (which for our cir-
cuits could be as high as 10 MHz). Thus, an
entire frame would be processed in Nf. seconds.
For a 512 x 512 frame this would amount to

50 usec. The advantages of these techniques for
direct focal plane processing are clear.

We describe here two test circuits to be
implemented as n-channel surface CCD's with
nominal operating speed of 10 MHz, We are cur-
rently fabricating these circuits and designing
experiments to evaluate their performance.
Finally, we describe the test facilities we have
built, based on an Intel 8080 microcomputer to
test the concepts.

II. TEST CIRCUIT I

The first test circuit is a CCD implementation
of the Sobel edge detection algorithm. This cir-
cuit was chosen because it demonstrates two
operations important to image processing; the
possibility of achieving a two-dimensional convo-
lution with arbitrary weightings and the ability to
perform nonlinear functions such as the absolute
magnitude operation.

The algorithm itself operates on an array of

3 by 3 picture elements with intensities £(i, j) and
evaluates

s{i,j} =% ['(f(i-l,j-l) +2£(1, j-1) +f(i+1,j-1))
- (£(i-1,j41) + 2£(i, j+1) +f(i+1,j+l)>l
+](86-1,5-1) + 266i-1,5) + £G3-1, 5+1)
- (e641, 1) + 266641, §) +f(i+1,j+1))f] (1)
for each picture element. A schematic of tae

circuit concept is shown in Fig. 2. Three parallel
lines of charge, proportional to the pixel

*A more detailed discussion of this work can be found in
the USC Semi-Annual Technical Report, dated Sept. 30, 1976.
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intensities, are fed into the device using Tompsett
potential equilibration inputs for linear operation.
The top and bottom lines of charge are then
divided into two parallel channels using a central
implanted channel stop as illustrated, and floating
gate electrodes are used to nondestructively sense
the charge in each channel. With the electrode
configuration shown, the voltage appearing on the
top interconnection, for example, is

Vy=kCy, {f(i-l,j-l) + 2601, j-1) + €41, §-1)}

where Cgyx is the oxide capacitance and k is a con-
stant relating the charge generated by the input
circuit to the pixel intensity. The weightings,
(1,2,1) are obtained directly by making the central
electrodes twice the area of those on the corners.
The voltages appearing on the other three inter-
connects are equivalent to the other expressions
shown in equation (1).

To calculate the full Sobel, {S i,j}, pairs of
these outputs are then subtracted and the absolute

PROCESSING CIRCUITS

‘c = CCD CLOCK RATE

tg = START OF FRAME TRANSFER

Concept of Parallel Pre-Processing Configuration

value of these operations taken prior to summa-
tion. In the direct implementation conventional
MOS differential amplifiers can be used to per-
form this first operation, and the outputs from
these fed to absolute value circuits.

Two absolute value circuits are included on
Test Circuit I and output will be available from
both. Figure 3 depicts the circuit schematic and
potential diagram of a single channel CCD abso-
lute circuit. The circuit uses a fill and spill
input system to generate a charge, Q, propor-
tional to the magnitude of the voltage difference on
gates Sig and B2, i.e., Q = Cox (Vgijg - Vp2). In
this way the B2 electrode is used as reference.
For a negative input signal the potential profile at
the silicon surface is as shown in the upper figure.
When the diffusion ¢yNa is pulsed, charge flows
along the surface and fills the potential well
shown. When ¢ynp drops, the excess charge
flows across the potential barrier formed under
the signal electrode back to the input diffusion.
Then as the transfer gates, ¢oyTA, are clocked,
the charge represented by the shaded area is
clocked out. For a positive input signal, the
potential profile is shown in the lower figure.
After the spill and fill operation is completed by
again pulsing the input diffusion, charge collects
in the well as shown, and the charge indicated by
the shaded area is clocked out. If the total gate
area of FZ and SIG is designed to be equal to that
of B2 and FZ, equal amount of charge will be

transferred for positive and negative signals of
the same magnitude. Thus, an absolute value
function in the charge domain is obtained. This
implementation has a number of advantages which
will materially affect the performance and accur-
acy of the circuit. For example, it always pro-
vides a 'fat zero' bias charge packet (indicated by
the cross-hatched area) to decrease the transfer
inefficiency caused by the surface states in the
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channel. The level of this 'fat zero' is controlled
by the dc bias applied to FZ.

A preliminary experiment was performed on
a simple input to demonstrate the functional con-
cept described above. Thig circuit was not
designed for performing absolute value functions.
Hence, its input gates are not structured for this
particular application. However, it illustrates
the validity of the concept. Figure 4 is a scope
photograph of both the input and output waveforms.
It can be seen that the bottom half of the input
waveform is inverted in the output. The output
waveform is not symmetrical about the zero level
due to the asymmetry of the input gate
arrangement,

INPUT

' 2 v/div

OUTPUT
0.5 V/div

20 usec/div

Fig. 4. Input and Output Waveforms of a
CCD Absolute Value Circuit

The other absolute value circuit to be included
in Test-Chip I uses two parallel CCD channels
which act as rectifiers to provide a single differ-
ence output. The basic details of this concept
were described in the USC Semi-Annual Technical
Report for Sept, 30, 1976.

We are currently in the process of fabricating
these devices on a Hughes Aircraft Company IR&D
chip and we anticipate circuits will be available in
April 1977.

III. TEST CIRCUIT II

The detailed design and layout for a second
test circuit is currently in progress. The circuit
is designed to operate on a 3 by 3 array of pixels
and perform the five operations defined in equa-
tions 1 through 5.

y 48 #

Low Pass Filter f_(i,j) =g E 2 (i, j) (2)
i-1j-1

Unsharp Masking S(i, j) = (1-a) S(i, j)

taf (ij) (3)
Adaptive Binarizer f, (i, j)
1 f_(i,j) = 13, j)

={ m) (4)
0 £ (i,j) > £(i,])

Adaptive Stretching fa(i.j)

{2 Min {£(i, j), r/2} falicd) = /2
= (5)

2 Max {(f(i,j)-r/l), o}fm(i,j) >r/2

The circuit philosophy is to provide each of
the five output functions independently and make
the interconnection either with wire bonds on the
chip surface or external coax. In this way
parallel techniques will be investigated and each
function can be isolated and tested separately.
For example, two Sobel circuits will be built (one
using a HAC proprietary arithmetic technique for
charge sensing and calculation), and a number of
novel absolute value circuits developed. This
will allow us in the initial testing phase to evalu-
ate six different circuit arrangements for edge
detection and determine the performance and
accuracy of each approach. Then, in the final,
image processing, we will select the optimum.

The detailed design and simulation of each of
these devices has now been completed. A brief
description of each circuit element is given below.

A. Edge Detection

The edge detection technique is again based on
on the Sobel operator, and two circuit concepts
are being developed, based on the two dimensional
CCD matrix shown in Fig. 2. The design of the
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differential amplifiers have been computer
simulated up to 20 MHz, and it is estimated that
an accuracy equivalent to 7 bits will be achieved
with a gain of 0.8. The balance achieved between
the two input devices is crucial to accurate oper-
ation and in the device now being drawn, particu-
lar emphasis is given to this issue.

B. Low-Pass Filter and Center Element

The low-pass filter uses three floating gate
electrodes to sense and sum the charge magni-
tudes in nine adjacent cells. The output

represents
i+l j+l
T T )
i-1 -1

and hence is nine times the mean. This has been
done (rather than make each floating gate a ninth
of the full cell size) to increase the sensitivity.

It does, however, require a CCD shift register
with nine times the width to sense the center pixel
to achieve balanced signals.

C. Unsharp Masking Circuit

The concept of the unsharp masking circuit is
shown in Fig. 5. It is based on the analog multi-
plier. Externally adjustable inputs (controllable
by external power supplies) are fed to transistors
T1 and T2 which control the gain of the two input
devices T3 and T4. Since these are drawing cur-
rent from a common source Vpp the voltage of
node, N, varies as (1 - a) fs(j,k +afn(j, k). The
output from the source follower is thus equivalent

Voo

]

SOBEL INPUT
LOW PASS
o—l T3 T4 INPUT

T’Zo—f 14l T2 l—""a

Fig. 5. Analog Multiplier Used for Unsharp
Masking

to the unsharp masked output as defined by (3).
The external control allows the output to vary
from all edges to cumplete low-pass output.

D. Binarizer

The concept of the binarizer has been em-
ployed widely as the refresh element for digital
CCD memories. Its basic form is shown in
Fig. 6(a). The usual accuracy requirement for
the digital refresh is comparatively low: merely
sensing about a fixed threshold. The accuracy
attainable is controlled by the matching of the two
symmetrical halves of the circuit and is largely a
geometric and threshold problem. A photograph
of a typical digital refresh circuit (taken from
Hughes Aircraft CRC 100 chip) is shown in Fig.
6(b) where the required symmetry is immediately
apparent. Typical MOS threshold variation might
be approximately 20 mV and hence 7 bit accuracy
will require greater than 2 volt swings.

The binarization requires considerably more
accuracy than direct refresh since the switching
voltage itself is varying and is likely to be very
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Fig. 6(a). Schematic of Binarizer

Fig. 6(b). Photo-micrograph of Binarizer
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close to the input signal (one being the center
pixel, the threshold being the average of its nine
neighbors). We are therefore currently consider-
ing using a preamplification stage prior to the
cross-coupled latch shown. An amplification of
say 5 would be sufficient to achieve the necessary
accdracy and provide correct latching. This
problem is currently being analyzed.

Adaptive Stretching

The adaptive stretching function is imple-
mented by having an input signal equivalent to £(i, j)
ac coupled to a MOS transistor which is driven by
an external voltage V,. (This input can also be
derived from the mean f , by internal bonding on
the chip.) The gain of this circuit is 2 and the
output will be linear until the transistor T1 limits
at (i, j)| ;. (i. ., input magnitude £(i, j)| /2).
The complément of this output is also avaﬁlaag‘le
which provides a thresholded output (up to
£(i, j)| max) and then a linear gain of 2. These two
outputs provide the transfer function shown on
page 160 of the September 1976 Semi-Annual,
isolating the high brightness and shadow regions
and can be externally varied by controlling the
threshold voltage V; and the gain, via the source
follower input Vg.

IV. TEST FACILITIES

During the past six months we have spent a
considerable time developing the test facilities
necessary to demonstrate the performance of our
CCD circuits on the USC data base. The concept
of the system is shown in Fig. 7. It is based on
the IMSAI 8080 microprocessor and interfaces
with the USC PDP-10 via a standard 30 byte tele-
phone line. Image data, stored on magnetic tape
at the Image Processing Institute, is read by the
PDP-10 and transmitted to Hughes Research
Laboratories via the existing telephone tie lines,
and stored in the digital memory of the micro-
processor. The data carn then be displayed on the
TV monitor shown, and if required stored on a
commercial tape recorder cassette for later
reference. An eight bit digital to analog converter
is then used to access the data in the memory and
interface with CCD circuits. The processed data
from the circuits is then returned to the memory
via an analog to digital converter as shown.

The circuits themselves are bonded in a 40
pin dual in-line package and mounted in a coaxial
breakout box, through which the clocking pulses,
biases and resets are applied. At the present
time all the components shown in Fig. 7 have
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Fig. 7. Schematic of Test Set-up




been built and interfaced to form the full system.
A photograph of part of the system is shown in
Fig. 8. We have also developed the necessary
software to interface the PDP-10 with our system,
and successfully accessed images from the USC
system for both storage and display.
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INTRODUCTION

The primary objective of our research effort is to
develop techniques and systems which would lead to
successful demonstration of image understanding concepts
over a wide variety of tasks, using all the available sources
of knowledge. This requires the determination ot the type
and nature of knowledge that might be applicable in a given
task situation. The representation, use, and evaluation of
such knowledge must be made within a total system’s
context. The research program at CMU is an attempt at
parallel development of various components, incrementally
leading to increasingly complex image understanding
systems.

SYSTEMS AND TASKS

The image understanding research at CMU uses DEC
System 10/80, C.mmp (a 16 processor multi-mini computer
system), and a dedicated MIPS (Multi-sensor Image
Processing System) computer. A complete description of
MIPS, including the rationale for various design choices is
given in McKeown and Reddy (1977).

Our present plans are to attempt to interpret
uncontrived arbitrary images representing different views
. of the downtown Pittsburgh area (a 3-D world), and aerial
and satellite views of the Washington, D.C. area (a 2-D
world). The world models for these tasks are expected to
be generated incrementally over the next few years.

KNOWLEDGE REPRESENTATION AND SEARCH

The paper by Rubin and Reddy in this workshop
presents our current views about representation of
knowledge. The PPE graph structure representation of
knowledge tends to be expensive in terms of space
required, but is essential if we wish to use the taster beam-
search techniques for image interpretation. We expect to
embed this particular knowledge representation and search
as the principal component into a total system which will
involve planning (solution in simpler, coarser, or abstract
spaces), iterative dynamic refinement of knowledge
representation, and goal-directed interpretation strategies.

At present we are developing the following
knowledge sources for the downtown Pittsburgh task: a 3-
D model of the downtown Pittsburgh area, knowldge about
building structures and textures, knowledge about local
refinements given coarse recognition (e.g., detecting cars in
roads and trees and bushes next to roads), knowledge about
shadows occlusions and highlights, and so on. Given our
basic approach of iterative refinement of knowledge, we will
start with simple versions of these knowledge sources, and
refine them as we observe their limitations when applied to
different scenes.

CHANGE DETECTION

We plan to continue experiments in symbolic
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registration and change detection (see the paper by Price
and Reddy in this workshop). As changes due to
perspective and scale become more and more dominant, it
becomes desirable to view the problem of registration as
one of search involving constraint satisfaction based on
spacial relationships. We think the model presented in Rubin
and Reddy (in this workshop) would also be useful in this
case. The paper by Kober et al. (in this workshop) from
CDC indicates the progress to date on the cooperative image
registration research.

IMAGE DATABASE

If we are to have adequate performance and error
analysis tools and tools for knowledge source generation, it
is desirable to manually (or interactively) generate symbolic
descriptions of the images to be analyzed. This and other
considerations have led us to begin to develop a unified
symbolic and signal image database system. The structure
of this database is described in McKeown and Reddy (1977).
The database has several hundred images but only a few
have symbolic descripfions so far.

ARCHITECTURES FOR IMAGE PROCESSING

It is estimated that we will require processing power
of the order of 1 to 10 billion instructions per second in an
all digital image processing system with rapid response
times. We are attempting to develop (in cooperation with
CDC) new problem-oricnted high speed digital processor
architectures for image processing. Given that C.mmp and
MIPS are closely coupled multiprocessing systems, we are
exploring issues of algorithm decomposition and parallel-
pipeline system structures for image processing. Another
aspect under study is the development of a special
instruction set for image processing using the writable
microstore available with the PDP-11 processors on C.mmp
and MIPS.

KNOWLEDGE ACQUISITION

Given the paucity of ideas about type and nature of
knowledge used in visual perception, we are continuing our
protocol analysis studies in human visual perception.
Studies in progress include picture puzzles (Akin and Reddy,
1977), perception as a function of distance, perception in
the presence of contradiction, and peep-hole perception
studies.

CONCLUSION

The research program at CMU has many facets, but
we expect that progress will be slow given the inherent
complexity of the problem and limited resources (present
level of effort: about one person per topic above). At
present there is very little low-level vision research except
tor the components generated by Ohlander and Price as part
of their theses. We expect to primarily concentrate our
efforts on total system design, knowledge acquisition and
representation, and specialized architectures for image
understanding research.
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1976-77. PROGRAM REVIEW

R. Larson

HONEYWELL INC.
Systems and Research
Minneapolis, Minnesota 55413

The Honeywell contract began in May 1976 and
is part of a long range plan to develop a context
dependent image screening device. Potential appli-
cations for such a device include missile guidance,
automatic aerial reconnaisance, RPV data compres-
sion, intelligence gathering, FLIR operator cueing
and many more. Each application has different re-
quirements for the kind of result the screener must
provide and the size and kind of hardware that can
be used. However, the basic algorithm and hardware
technology for any one mission should be useful to
the other missions.

Our current contract has two main parts:
o Autothreshold hardware modification to
the Autoscreener.
o Application of syntactic pattern recog-
nition methods.

AUTOTHRESHOLD HARDWARE MODIFICATION

The autothreshold work is funded by the Air
Force Avionics Laboratory and is to make the Auto-
screener self adaptive to background and contrast
changes. The adapting is done by estimating the
background intensity at each pixel position while
the picture is being scanned. To make the estimate,
the device decides whether the pixel is like the
background estimate for that position. If not,
then the background estimate is left unchanged. If
it is like the background estimate, then the back-
ground estimate is updated using the new value.

The new background estimate is then compared with
pixels in the next scan line. If the actual image
intensity is much different than the background
estimate, it indicates a possible object of inter-
est. Edge detection is done using the 3x3 Sobel
gradient operator. Large values of the gradient
give another indication of a possible object of
interest. When both the intensity and the gradient
indicate an object of interest then that portion of
the image is extracted and analyzed further by auto-
screener.

This authothreshold algorithm is currently
being implemented in hardware to provide a real-
time interface between a FLIR sensor and the Auto-
screener. Both the background estimate and the
edge detection are done in hybrid, discrete analog
fashion (continuous amplitude, discrete in space)
using CCD scan line storage devices. The current
implementation uses discrete hardwired components
and occupies five 4% inch by 6% inch boards.
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APPLICATION OF SYNTACTIC METHODS

This part of the contract is being funded by
DARPA through AFAL and is concerned with developing
and applying algorithms for real time image screen-
ing. The initial syntactic pattern recognition
effort has three aspects:

o Define a tractable problem, select approach-
es to its solution and obtain a suitable
data base for the work.

o Develop Autoscreener relevant DARPA research
at Purdue University. J

o Evaluate and apply Honeywell IR&D and FLIR
research to the Autoscreener.

Problem Definition

In consultation with Professor T.S. Huang of Purdue,
we decided to direct the first year toward recog-
nizing airborne FLIR images of isolated tactical
targets in a rural environment. FLIR imagery was
chosen (rather than photographs, TV and downward
looking IR) as being the most 1ikely tactical sen-
sor. The class of isolated tactical targets was
deemed sufficiently complex and large for a first
attempt at applying syntactic and contextual meth-
ods to tactical quality imagery. We chose to fur-
ther 1imit our attention to those kinds of isolated
tactical targets for which we could obtain suitable
data.

Data Base Selection--The Krebs data base* was
chosen as our primary data source. The Krebs

data contains a large variety of tactical targets
of both military and non-military types. In
addition to ground vehicles, there is imagery of
factories, docks, bridges (short and long), power
lines, houses and even one example of a helicopter
flying across the field of view. After much dis-
cussion, we decided to work only with military
ground vehicles as the primary target class and |
include as additional classes of interest any ob- |
jects or background areas that appeared in frames {
containing primary targets and which could either

aid classification by context or which might be

confused with the primary targets. The object

types selected include: Tank, Truck, APC, Car, |
House, Road, Vegetation, Shadow. é

Solution Approach--Next, we considered possible ‘
methods of recognizing these target types. In gen-

eral, an imagery recognition system has four levels

of activity:




1. Object Detection
2. Target Detection

3. Target/Background Separation (Boundary
Location)

4., Target Recognition

Each level of activity has its own goals and the
degree to which it meets these goals affects the
performance of the following levels. The functions
in each level are also affected by the size of the
target image. Because of the variety of functions
and performance requirements and the fact that
parts of the problem have been studied and/or
solved by other efforts, the scope of the approach
was limited to points 3 and 4 - Target/Background
Separation and Target Recognition - and we decided
to focus on medium resolution imagery. (Medium
resolution is defined as vehicle image area of 50
to 600 pels.)

Autoscreener Relevant Research at Purdue

Purdue University has been 1ooking at the FLIR tac-
tical target recognition problem with the intent to
combine various simple measurements into a "smart

detector" using texture, chape, and context infor-

mation. Several basic simple measurement techniques
being developed at Purdue have been applied to the "
FLIR imagery to determine what types of processing

are useful in a higher level system. These include
texture segmentation, statistical contour following,
and feature-plane clustering. The overall detector
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design is now being developed which will combine
the useful measures intelligently. Details of this
work are reported separately by Purdue.

Applications of Honeywell Technology

The group at Purdue had prior experience with using
high-level primitives (image segmentation, shape
analysis, texture transformations, etc.) in image
analysis. Honeywell therefore chose to transform
the imagery directly into a low-level symbolic
representation and perform syntactic analysis on
the resulting symbol array. The method chosen was
a method for adaptive cluster seeking that had
been conceived in signal processing research. The
method was restated for use on imagery and applied
to the digitized FLIR data. The results of this
work are described in the workshop paper “Symbolic
Analysis of Images using Prototype Similarity".

* The Kreb's data set was collected under RADC
funding using a Honeywell 18 detector serial scan
FLIR mounted in a Navy P2-V aircraft flying out of
the Naval Air Test Center at Patuxent River, Mary-
land. The flights were made during the spring of
1974 at altitudes from 2500 feet to 3500 feet. The
original purpose for the data was to evaluate

human factors issues in operator recognition of
FLIR targets.




ALGORITHMS AND HARDWARE TECHNOLOGY FOR IMAGE RECOGNITION

Project status report - March, 1977

Computer Science Center

University of Maryland
College Park, MD 20742

ABSTRACT

This report summarizes the current
status of the research being conducted
under Contract DAAG53-76C-0138 (DARPA
order 3206), as well as plans for work to
be done on this project in the near future.
This project was initiated on May 1, 1976.
It is being carried out by the Computer
Vision Laboratory, Computer Science Center,
University of Maryland, College Park, MD;
Profs. Azriel Rosenfeld and David L. Mil-
gram are principal investigators. It is
devoted to the development and selection
of algorithms for automatic target cueing
on Forward-Looking InfraRed (FLIR) imagery,
and to the hardware implementation of one
or two such algorithms. The hardware as-
pects are being investigated by the West-
inghouse Defense and Electronic Systems
Center, Systems Development Division,
Baltimore, MD; program director of this
subcontract is Dr. Glenn E. Tisdale. The
project is being monitored by Messrs. John
Dehne and George Jones of the U. S. Army
Night Vision Laboratory, Ft. Belvoir, VA.

&5 Introduction

The project reviewed in this status
report has two principal goals:

a) Selection of state-of-the-art
algorithms for automatic target
cueing, and implementation of one
or two selected algorithms in
hardware to demonstrate the
feasibility of incorporating such
algorithms in a reconnaissance
sensor.

b) Exploration of new approaches to
image understanding, with emphasis
on techniques applicable to target
cueing and similar applications,
as well as on image modeling for
performance prediction.

The project consists of three phases
all of which involve collaboration between
the University and its subcontractor, the
Systems Development Division of Westing-
house. The three phases and their break-
down into tasks are displayed in the
following table:

Phase

II

III

Task

(Task and technology review)
1) Data base acquisition

2) Review of tri-service oper-
ational needs and resulting
system design constraints.

3) IHardware/alyoritim interface
(Algorithm development and test-
ing)
4) Algorithm development
5) Algorithm selection and test
6) Target and background model-
ling

(Hardware design, fabrication,
and testing)

2. Data base acquisition

Three data bases were acquired and
preprocessed (smoothed, windowed) :

a)

b)

c)

NVL data base: A set of 145 FLIR
scenes containing targets (tanks,
trucks, APC's) against a sparsely
wooded or barren background.

Alabama data base: A set of 54
FLIR scenes containing targets
(tanks, APC's, buses, jeeps, and
personnel) against a somewhat
less noisy background.

Sequential data base: A sequence
of 10 FLIR images, similar to
those in the first data base,
taken 1/15 second apart.

Detailed descriptions of the first data
base can be found in [1], and of the
second and third data bases in [2].

3. Image modelling

An approach to modelling FLIR imagery
has been developed, based on the simpli-
fying assumption that targets appear as
homogeneous hot regions within a homo-

geneous cooler surround.

This model

describes the joint probability density




of gray level and edge strength in such
images, for various edge-detecting oper-
ators [1l, 2]. In brief, the model pre-
dicts that for low edge values (corres-
ponding to points in the interiors of
objects and background), there should be
two relatively well separated probability
peaks, of different sizes, representing
the gray levels of object and background
interiors, respectively. For higher edge
values, corresponding to points on object/
background borders, these peaks should
move together and become a single peak
representing the border range of gray
levels. v

The model just described can be used
as a guide to segmenting FLIR images by
thresholding. At low edge values, it
should be easy to pick a threshold at a
gray level in the valley between the two
probability peaks, since these are rela-
tively well separated. At high edge
values, the peak gray level value itself,
or perhaps the mean gray level, should be
a good threshold, since this represents
the "center" of the edges. For inter-
mediate edge values, one can compromise
between these two thresholds in various
ways. A comparative study of threshold
selection schemes based on this approach
has been conducted [3], and has shown them
to be superior to conventional threshold
selection methods.

4. Object extraction based on threshold
selection

As a preliminary to using threshold-
ing to extract objects from an image, it
is important to smooth the image, so that
the extracted objects will not be too
noisy. The use of both mean and median
filtering for this purpose was investiga-
ted [1-2]. It was found that median
filtering using a 3x3 neighborhood of
each point produced the best results. An
adaptive technique, which identifies
neighborhoods that are noisy and edge-
free, was shown in [4] to smooth noisy
regions in images without degrading edges.
The technique was also used to produce a
weighting function to suppress spurious
responses of an edge detector operating
in a noisy environment.

Threshold selection based on the
(gray level, edge strength) probability
density was investigated using a number
of different edge detectors [1-2]. It
was found that a "coarse gradient" detec-
tor, based on differences of averages
taken over pairs of adjacent 4x4 neighbor-
hoods, gave the best results, since this
detector combines smoothing with edge de-
tection.

Even when applied to smoothed images,
thresholding methods will sometimes ex-
tract noise regions, as well as objects.
Postprocessing techniques, based on

shrinking and reexpanding of the above-
threshold areas, can be used to eliminate
many of these noise regions. Several
variations on this approach were studied
in [1-2].

The regions surviving the postpro-
cessing step must now be classified into
target and nontarget classes. To this
end, the connected components of the
surviving points are extracted, and a set
of size and shape features is measured
for each component. A discussion of
feature selection and the classification
procedure will be presented in Section 6.

5. Object extraction based on edge/
border coincidence

The thresholding approach to object
extraction described above has the dis-
advantage that a single threshold will
usually not be satisfactory for an entire
scene. If the image is divided into
windows, two difficulties arise if a
threshold is assigned to each window.
First, it is still possible that objects
at different intensities will be in the
same windows and second, an object may
now overlap several windows. In the
former case, we will miss one or more
objects (assuming the threshold selection
algorithm will choose an appropriate
threshold for the multi-object window) .
In the latter, different thresholds may
have been chosen in adjacent windows tc
extract regions of the same object. This
inconsistency is likely to affect what
the thresholded objects looks like. A
further difficulty attends the interpre-
tation of the thresholded image since it
pecomes difficult to differentiate object
regions from noise regions.

The approach which has been developed
views the extraction of objects as a
classification process into two classes:
object regions and noise regions. Re-
gions to be classified are extracted by
first thresholding the {smoothed) image
and then segmenting the thresholded image
into connected components. Each connected
component is considered to be a candidate
for classification. Three heuristics are
used: a size heuristic, a contrast
heuristic and a "well-definedness"
heuristic. If object size range is known
a priori, then noise regions outside the
object size range can be rejected. The
contrast heuristic states that objects
contrast with their surrounds. This may
be quantified by measuring the average
gray level difference between the interior
of a connected component and its boundary.
Finally, the well-definedness heuristic
states that objects are viewed as being
distinct from their surround by the pre-
sence of an edge at the boundary. This
is computed first, by extracting an "edge
map" from the scene, consisting of the




result of thinning the output of an edge
detector; second, by measuring for each
extracted region the percentage of its
border which coincides with the edge map.

The combination of the contrast
measure with the edge/border coincidence
serves both as a discriminant function for
object regions and as a figure of merit
for ranking the classified object regions.
This approach does not require the user to
preselect a particular threshold or set of
thresholds. However, the speed of the
algorithm is linear in the number of
thresholds investigated. Moreover, the
false alarm rate is related to the gray
level probability of the chosen thresholds.
This implies that care in selecting
thresholds will generally be worthwhile.
An implementation of this method has pro-
vided good segmentations of FLIR windows.

6. Target classification

Regions classified as objects by the
methods of Section 5, may be further
classified as to target type. A hierar-
chical decision structure has been imple-
mentec based on size, shape and contrast
features. Object regions which survive
the prescreening are divided into two
groups based on size. The group of
smaller regions is classified into target
and noise classes based on compact shape
and contrast. No attempt ‘s made to
identify the particular ta get types since
these objects generally correspond to
vehicles at long range with no identifiable
characteristics. The group of larger re-
gions is classified into tank, APC, truck
and noise classes based on shape (compact-
ness, symmetry, aspect) and contrast.

Selection of the set of features
actually used at each node of the decision
tree is restricted to those "logically
allowable" at the given node. For ex-
ample, while the brightness of a region is
allowed to diztinguish objects from noise,
it is not used to determine vehicle type.
The point of this restriction is to reduce
the dependence of the final classifier on
the pre-classified data, increasing both
the robustness and the intelligibility of
the classification. After this logical
preselection is made, the effectiveness of
features to be assigned to a node can be
evaluated by standard statistical techni-
ques (analysis of covariance, multiple
discriminant analysis). The purpose is
to increase the stability of the classi-
fier without decreasing its accuracy. Ex-
periments described in [2] exhibit good
self-classification; however, we have not
obtained good results when extending the
classifier to a test set.

7. Hardware design

The Westinghouse 3ystems Development
Division as a subcontractor to the Univer-

sity of Maryland has concentrated on the
hardware implementation and fabrication
of image algorithms for the focal plane
[1, 2]. Algorithms whose hardware im-
plementation has been designed include:
median filtering, edge detection using
differences of averages, edge thinning by
non-maximum suppression, threshold selec-
tion based on a (gradient, gray level)
histogram, noise cleaning by shrinking
ana =2xpanding and additional support logic
such as serpentine delay lines and A/D
converters. The attempt throughout is to
design and build algorithms in analog CCD
hardware within overall system constraints
on data flow, storage requirements, chip-
size, yield factors and cost.
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IMAGE UNDERSTANDING AND INFORMATiON EXTRACTION

K.S. Fu and T.S. Huang
Purdue University
W. Lafayette, Indiana 47907

This is a progress rcport of our research in
Image Understanding and Information Extraction dur-
ing the last six months. The objective of this re-
search is to achieve better understanding of image
structure and to improve the capability of image
data processing systems to extract information
from imagery and to convey that information in a
useful form. The results of this research are ex-
pected to provide the basis for technology devel-
opment relative to military applications of ma-
chine extraction of information from aircraft and
satellite imagery.

Our research projects can be categorized into
six rather heavily overlapping areas. Image
Segmentation, Image Attributes, Image Structure,
Image Recognition Techniques, Preprocessing and
Applications. The relationships and interactions
among these categories is suggested by Figure 1.
After the sensor collects the image data, the pre-
processor may either compress it for storage or
transmission or it may attempt to put the data
into a form more suitable for analysis. Image seg-
mentation may simply involve locating objects in
the image or, for complex scenes, determination of
characteristically different regions may be re-
quired. Each of the objects or regions is cate-
gorized by the classifier which may use either
classical decision-theoretic methods or some of the
more recently developed syntactic methods. In
linguistic terminology, the regions (objects) are
primitives, and the classifier finds attributes
for these primitives. Finally, the structural ana-
lyzer attempts to determine the spatial, spectral,
and/or temporal relationships among the classified
primitives, In some respects, this is where real
""image understanding'' is developed.

Our accomplishments during the past six months
have been recorded in our progress reports [1,2].
Here we shall summarize the highlights:

IMAGE SEGMENTATION - Considerable progress has
been seen in segmentation of imagery by clustering
methods. Yoo and Huang have pursued this approach
throughout the year, and a summary of their work,
with application to images containing a tank and
two aircraft, is included in [1].

The work of Carlton and Mitchell concerning
texture has now evolved from the study of image
attributes to the development of techniques for
image segmentation using texture and gray level
features. Their results, discussed in [1], offer

the potential of a very fast method which might be
implemented either digitally, optically, or with
CCD devices.

Keng and Fu have studied the problem of image
segmentation by a syntactic method, This method
involves the following four steps: (1) texture
region primitive extraction, (2) boundary primi-
tive extraction, (3) grammatical inference, and
(4) syntax analysis. Examples of applying the
method to various images are also reported [2].

IMAGE ATTRIBUTES - Following our earlier ef-
fort on Fourier shape descriptors, Wallace and
Wintz have continued to study the use of Fourier
descriptors for three-dimensional objects. Yoo
and Huang have investigated the sufficient number
of Fourier coefficients for a discrimination pro-
cess. An efficient implementation of Fourier
descriptor algorithms is also described [2].

IMAGE STRUCTURE - A syntactic approach to
shape description has been studied by You and Fu,
A k-tuple curve primitive and an angle primitive
are proposed, and their properties studies.,

Shape grammars based on the proposed primitives
are constructed foi' different shapes [2].

IMAGE RECOGNITION TECHNIQUES = A '"supervised
clustering' method has been shown by Fukunaga and
Short to be useful for localizing a problem
rather than dealing with a more difficult global
problem. Computationally simple yet accurate re-
sults are obtained. Potential applications of the

approach include linear classifier design and den-
sity estimation [1].

Classification using image context has been
studied by Swain and Kit. A statistical contex-
tual classifier minimizing Bayes risk is de-
rived, Preliminary results from data simulation
have been reported [2].

PREPROCESS ING - The projection algorithm for
image restoration studied by Berger and Huang is
being adapted for use on actual satellite data.
Practical considerations of the algorithm are re-
ported [1,2]. 0'Connor and Huang have investiga-

ted the phase unwrapping with applications to
stability and picture deblurring. |Improvements in
one-dimensional phase unwrapping are made and a
two-dimensional phase unwrapping algorithm is pro-

posed. Extensive results from the development are
reported [2].

o i S




APPLICATIONS - Fourier descriptors have been
demonstrated to be a useful means of describing
the shape of a closed planar figure, and, in
particular, Wallace and Wintz have used Fourier
descriptors to encode the shapes of alrcraft,
Results using this approach for aircraft recogni-
tion have been reported [1].

Spatial filtering has been used by Mitchell,
et. al, to reduce the effects of light clou
cover in satellite imagery. Results from a
computer simulation and from LANDSAT data are
discussed in [1].
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OVERVIEW OF THE ROCHESTER IMAGE UNDERSTANDING PROJECT

Jerome A. Feldman

Computer Science Department
The University of Rochester

The Rochester program covers three major sub-
topics: wusing map knowledge for specific aerial
imagery tasks, development of a general image
understanding framework, and system support for
image understanding. These will be briefly dis-
cussed in reverse order.

One of our first tasks was the extension of
the SAIL programming language which is heavily
used by contractors in this program. The largest
change was increasing the number of allowable
items from 4,000 to 256,000, thus overcoming one
major bottleneck. This addition, along with
others which increase speed and reliability, was
incorporated into the standard SAIL files at Stan-
ford and have been distributed to user sites.
Current programming language work is centered
around development of a new language for distri-
buted computing tasks, including image processing.

The entire problem of dealing with images in
a network environment is of continuing concern.
We have made considerable progress towards a
flexible, machine-independent distributed image
processing system. A summary of this work and
references to more detailed descriptions can be
found in the technical paper by Feldman and Rashid
in this volume. One result of this work should be
a domain-independent interface between image dis-
plays and 1mage understanding programs.

The development of these general tools {s
part of a larger effort to construct an image
understanding system which will be useful for a
wide variety of tasks. This work is proceeding
in parallel with our direct attacks on practical
image understanding tasks for ARPA and cther
agencies. The interaction between tool builders
and tool users is having the multiplier effect we
expected when we started these efforts. An over-
view of the general vision system is given in the
paper by Brown and Lantz in this volume.

We want the system to be a practical aid to
accomplishing vision tasks rather than just a
methodology in search of a problem. It is there-
fore initially designed to act as a framework in
which to answer specific "queries" about images
posed as domain-dependent user code. At the same
time we want to develop and incorporate generally

useful facilities for control of vision tasks,
representation of knowledge, and automated
reasoning. As the latter facilities develop, the
user code may be written to leave more and more
details to the system. Al1 of this system and
generalization work is directed towards the
carrying out of specific image understanding
missions. Our immediate goal is to use a variety
of kinds of knowledge to solve particular prob-
lems in aerial imagery. For example, consider
the problem of finding and classifying ships in
an aerial image of a known port. Details are
given in the paper by Brown and Lantz, but the
main thrust of the approach is to use prior
knowledge about where and how ships may appear

to direct search for them. We want to have avail-
able through the system map knowledge about the
source of the image (e.g., where coastlines are),
assertional knowledge about how ships look, where
(in relation to other objects) they are found,
and procedural knowledge (e.g., how to verify

the presence of a given shape). The system is
designed to facilitate effective use of this
diverse knowledge, and furthermore to provide
facilities for the more-or-less automatic per-
formance of common tasks such as selecting the
best procedure for a task or reasoning about the
relative location of objects.

Textural areas can be thought of as those
parts of an image where segmentation based on
normal similarity measures fails. Meaningful
analysis of textured areas must include discrimi-
nation between different textures and detection
of parts of the same texture. The similarity of
textures which are identical except for a scale
change, a rotation, or a different range of in-
tensities must be recognized. Standard texture
analysis techniques rely on the calculation of a
set of features (like edge probability per unit
area, or local neighborhood co-occurrence
probability matrices) on training sets of images,
taking statistical measures of these features for
each training set (mean, standard deviation,
entropy, etc.), and partitioning the feature
hyper-space so that each partition contains
exactly one training set. Unknown texture
patches are now measured by the same feature
operators to determine their location in feature
hyper-space, and are assigned the texture class
of the appropriate partition. This technique
works well for limited domains, where an accurate
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training set can be chosen, and where textures
exhibit variation in the local features measured.
Rotations and scale changes result in a new tex-
ture class assignment.

We approach the texture problem by dividing
texture regions into meaningful sub-elements of
similar intensity sample points, then using
rotation- and scale-invariant shape measures to
characterize these regions, and finally deter-
mining spatial relationships among our sub-
elements. By using a decision-tree program
structure, easily discriminated textures are
separated quickly, and more complex textural
structure is only extracted when necessary. This
texture analysis scheme not only classifies tex-
ture patches into sets, but also produces a
description of similarities and differences among
different patches. That information is then
available to higher-level semantically driven
processes, and is more useful than a binary
same/different decision.

Much of our early effort has been devoted
to bringing up a system which would enable us to
pursue these tasks. Then we set out to gather
as much relevant software and example imagery as
possible to aveid duplication. This has been
quite successful due to the common use of the
SAIL language and the great cooperation by other
contractors. We are especially grateful to the
groups at CMU, Stanford, SRI, and USC for help-
ing us get so much productive work done so soon.




INTERACTIVE AIDS FOR CARTOGRAPHY AND PHOTO INTERPRETATION:
PROGRESS REPORT APRIL 1976 TO APRIL 1977

H.G. Barrow (Principal Investigator)

Artificial Intelligence Center
Stanford Research Institute

Menlo Park, California

Objectives

The central scientific goal of our
research is to investigate and develop
ways in which diverse sources of knowledge
may be brought to bear on the problem of
interpreting images. The research is
focused on the specific problems entailed
in interpreting aerial photographs for
cartographic or intelligence purposes.

A key concept is the use of a
generalized digital map to guide the
process of image interpretation. This
"map" is actually a data base containing
generic descriptions of objects and
situations, available imagery, and
techniques, in addition to topographical
and cultural information found in
conventional maps.

We recognize that within the
limitations of the current state of image
understanding it is not possible to
replace a skilled photo interpreter. It
is possible, however, to greatly
facilitate his work by providing a number
of collaborative aids that relieve him of
his more mundane and tedious chores.

Progress to Date

Qverview:

Our work has been centered on
evolutionary development towards an
integrated interactive system. It
consists of an interactive display
console, a map data base, an image
library, general image analysis routines,
and task specialist routines. At present
the system is not a unified whole, but
exists as a collection of programs: we are
still working towards their integration.
The following scenario illustrates the
major capabilities that have been
demonstrated to date.
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The first task when a new image enters
the system is to establish correspondence
with the map. This is accomplished
automatically, selecting potentially
visible landmarks (using navigational data
associated with the image) and then
locating them in the image using scene
analysis techniques. The next step is to
confirm the validity of existing
knowledge. The system can automatically
verify the presence of certain
cartographic features, such as roads and
waterways, and can also monitor the status
of some typical dynamic situations, such
as ships berthed in harbor or box cars
stored in a classification yard. New
features are identified and incorporated
into the data base using a number of
interactive aids for mensuration and
tracing. For example, new roads can be
traced, or heights of bridge supports can
be measured. The system can now use the
data base to answer simple queries,
entered by a photo interpreter via
keyboard and display cursor, such as,
"show me pier14"™, "what is this building?"
or "how high is that mountain™. It also
has the capability for responding to a
more complex query, such as "how many
ships were in Oakland-Harbor yesterday?",
by retrieving the relevant image from the
library, and then invoking the appropriate
task specialist.

At present, the questions that can be
asked are limited by the small size of the
data base and the available specialist
routines. The specialists to date are
for carefully chosen tasks that could be
performed with existing primitive low
level vision capabilities. Moreover, as
pointed out earlier, the demonstrated task
capabilities do not yet exist as a truly
unified system, but as a collection of

independent programs that share a common
data base. They do, however, show the
potential of bringing image understanding
and artificial intelligence approaches to
bear on problems in cartography and photo
interpretation.




Technical Details:

The first task in the scenario is
putting the sensed image into geometric
correspondence with reference imagery or a
map data base. This is fundamental to
virtually every military application of
imagery. Our initial approach was a
modest improvement on conventional image
correlation. Given an image and
approximate viewpoint, the system
determined potentially visible landmarks,
and then retrieved images containing the
landmarks from the library. For each
landmark, an appropriate area of the
reference image was extracted and
reprojected to make it appear more similar
to the sensed image. The reprojection was
accomplished using a camera model, based
on calibration data associated with the
reference image, and elevation data
obtained from the map. Each reprojected
image fragment was then correlated in a
small predicted area of the sensed image,
using Moravec’s high speed algorithm.
From the pairs of corresponding image and
world locations the exact camera
parameters for the sensed image were
computed by solving an over-constrained
set of equations.

Although repro jection prior to
matching is an improvement on conventional
image correlation, the fundamental

limitation of the correlation approach,
namely sensitivity to viewing conditions,
remains. In particular, it still cannot
match images obtained frem radically
different viewpoints (e.g. low altitude
obliques to high altitude verticals),
sensors, or seasonal climatic conditions,
and it cannot match images against
symbolic  maps. To overcome these
limitations, we developed a new approach,
parametri~ correspondence, for matching
images directly to a three dimensional
symbolic reference map.

The map contains a compact three-
dimensional representation of the shape of
major landmarks, such as coastlines,
buildings, and roads. An analytic camera
model is used to predict the location and
appearance of landmarks in the image,
generating a projection for an assumed
viewpoint. Correspondence is achieved by
adjusting the parameters of the camera
model until the predicted appearances of
the landmarks optimally match a symbolic
description extracted from the image. The
matching of image and map features is
performed rapidly by a new technique,

called "chamfer matching", that compares

the shapes of two collections of shape
fragments, at a cost proportional to
linear dimension, rather than area. These
two new techniques permit the matching of
spatially extensive features on the basis
of shape, which reduces the risk of
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ambiguous matches and the dependence on
viewing conditions inherent in the
conventional correlation based approach.
The technique is described in more detail
in our technical presentation. It has
obvious application to navigation and
targeting as well as photo interpretation.

Having placed the image into
parametric correspondence with the three
dimensional map, we are now in a position
to predict the image coordinates of any
feature in the map, and conversely, to
predict the map features corresponding to
any point in the image. The former is
used, for example, in monitoring to
indicate exactly where in the picture to
look. The latter is used to facilitate

interactive graphical communication
between the photo interpreter and the data
base. Using the camera model and image

calibration, many photo interpretation
mensuration tasks may be accomplished
simply. Routines exist for determining
location, length, height, or straight line
distance, for features indicated
interactively in the image, as well as
velocity for objects (e.g. ships or cars)

indicated in two images. The camera
model provides a unifying theoretical
foundation that subsumes what would

otherwise be a collection of ad hoc
trigonometric techniques. Combining the
map and calibrated image, the system can
also determine alternative routes and
travel distances along roads between
indicated points.

It is important to keep in mind that a
map is only an approximation to reality:
it may be incomplete, be out of date,
suppress details, or contain errors. In
order to monitor or to make a detailed
interpretation of an image, it is
necessary to locate image coordinates of
objects more precisely than can be
predicted using the map and calibration.
We need routines which can take
predictions and verify them in the image.
As a first step in that direction we
developed a guided 1line tracing routine
that accepts a rough approximation to the
path of linear features, such as rivers or
roads, and extracts a best estimate of the
precise path in the image. It operates
by applying a specially developed line
detector in the vicinity of the
approximate path, and then finds a
globally optimal path based on the local
feature values.

The tracing routine is used in two
ways; to verify the presence of known
cartographic features, wusing prediction
from the map, and to interactively trace
new features for incorporation into the
map, using a guideline sketched by the
user, The tracing of linear features is
currently a tedious manual process that




constitutes a major bottleneck in map
production.

Having a map and image in
correspondence makes the automation of
many monitoring tasks feasible. Keeping
track of box cars in a railyard, for
example, is a typical tedious photo
interpretation task. Knowing the layout
of the tracks, makes the task essentially
a one-dimensional template matching
problem. A routine has been developed
which flies statistical operators along a

track line to hypothesize possible ends of
box cars. These hypotheses are used with
knowledge of standard box car lengths and
characteristics of empty track to locate
the gaps between Dbox cars. The program
then reports the number of ecars,
classified by length.

Estimating highway traffic is a
similar problem which could be approached
by flying car and truck templates along
the path determined by the guided road
tracer.

Monitoring the presence of ships 1in a
harbor is particularly easy to automate
when the map contains details of berths.
Given a question about the status of a
particular harbor at a particular time,
the appropriate image 1is retrieved from
the data base. The ship monitoring
routine then projects berth locations from
the map onto the image and uses an edge
histogram of that region to determine
whether the berth is occupied.

The key to automatic monitoring lies
in being able to place the image into
correspondence with the map, which then
accurately specifies where to 1look. A
relatively simple test may then be used in
that limited context. We have implemented
three representative demonstrations of
this approach and believe that many others
are possible. In a production
environment, such monitoring could be
performed automatically on a continuing
basis as new imagery arrived.

The underlying foundation upon which
much of the foregoing rests is the map
data base. We have implemented a disc-
based semantic net data structure which
can contain realistic quantities of data
represented in a way which permits
efficient access. Entities are
represented by LISP atoms (cf. English
words) and information associated with the
entity is stored in a property list
format . When information concerning a
particular entity is sought, the property
list is retrieved from dise and
established in core. A "paging" scheme
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limits the amount of data in core (to,
say, 1000 entities) and writes entities
back out to dise, if necessary, least
recently used ones first.

We are in process of setting up a map
of the San Francisco Bay area, containing
major features, coastlines, bridges and
highways. The geographic data is indexed
(the index structure is part of the
database) to enable fast retrieval of
information relevant to a particular area.
In addition to the three dimensional
description of cartographic and cultural
features, the map contains a partial
taxonomy of world entities, with relevant
general semantics, a catalogue of
available imagery, and descriptions of
data structures used by the system. The
latter enables the system to construct
automatically new entities of the correct
structure for inclusion in the data base.

Future Plans

The fundamental problem addressed in
our research is putting what we see (i.e.
a sensed image) into correspondence with
what we know (i.e. the map data base).
The geometric type of correspondence used
extensively above, is particularly simple
because it relies on precise knowledge of
the appearance and structural
relationships of particular objects and of
the viewpoint.

The ultimate goal of automating photo
interpretation requires a much more
general matching capability. For
automatic map updating it must be possible
to recognize objects described
generically, for example, airports or
buildings whose precise form is not
previously known. This sets several
important requirements. The components
of a generic description must be
established and a means found for reliably
extracting appropriate features from the
image; a means of communicating
descriptions to the machine more
conveniently than programming must be

developed; and the capability of using
the description in the context of what is
already known must be developed.

In terms of these 1long range
objectives, the ad hoc task specialists
developed so far are lacking in both
generality and robustness. The primitive
descriptions they employ are adequate only
for straightforward cases, and can easily
be fooled by the unexpected. We also need
the ability to teach high level
descriptions by showing examples, rather
than the time-consuming process of
programming. Our next objective is,
therefore, a system that can be
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interactively programmed to find instances
of objects whose generic descriptions are
taught by example. Such a system would
allow a PI, for example to point at a box
car of a particular type and ask how many
are present in the railyard, or to
identify a new class of airplane and ask
whether any are visible in earlier
coverage (possibly misidentified
previously). These capabilities are very
hard to automate because of the difficulty
of reliably extracting features, so we
intend to begin with simpler cases, such
as finding airports or buildings. At the
same time we intend to experiment with
identifying objects from more complex
descriptions, relying on the PI to
interactively indicate features. A
recognition aid developed along the lines
of MYCIN would be a significant
improvement over conventional state-of-
the-art systems which do little more than
facilitate mensuration. This work will
also help to identify needed feature
extraction capabilities as candidates for
development.
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THE USC IMAGE UNDERSTANDING PROJECT*
1 October 1976 to 31 March 1977

Harry C. Andrews

Image Processing Institute
University of Southern California
Los Angeles, California 90007

1. Research Qverview

This document represents the third semi-
annual report funded under the current ARPA
Image Understanding contract and, as such,
presents a certain amount of momentum and
progress toward the goals originally undertaken
a year and a half ago. I feel confident in stating
that we clearly understand the Image Understand-
ing problems in considerably greater depth. I
also feel confident that we have made progress in
the specific areas of quantitative scene segment-
ation by clustering, quantitative edge detection and
evaluation, and (naturally with the arrival of
Dr. Keith Price) have gained a good step toward
general symbolic manipulation for the higher
levels of many Image Understanding tasks.

Naturally we have also progressed on the
traditional front of our expertise, that of Image
Processing. The past six months have seen
breakthroughs in the areas of variable sampling
procedures for image approximations, advances
in the a posteriori restoration problem as well as
object detection in noisy images. Optical filters
for image reconstruction have been designed and
the foundations for research in the psychophysical
characteristics of the human visual system have
been laid.

On the '"smart sensor' front considerable
effort has been expended in two areas by USC
personnel, that of 3 x 3 kernel definition for
future sensor implementation, and the study of
a real time CCD implementation of an on-board
image segmentor. Both these projects represent
study efforts for future designs. Naturally Hughes
Research Laboratory personnel have also been
progressing in the development of test circuitry for
the CCD chips under fabrication, and it appears
that as of this printing, the Sobel chip is in
production and is currently available for testing.

This semi-annual report also includes an
overview of the current USCIPI laboratory
configuration, numerous modifications having been
implemented over the past two years, Finally a
report of recent Institute Ph. D, dissertations are
included as well as the listing of recent Institute
personnel publications in the open literature,

*This research was supported by the Advanced
Research Projects Agency of the Department of
Defense and was monitored by the Wright Patterson
Air Force Base under Contract F-33615-76-C-1203,

2. Image Understanding Projects

This section presents recent results in the
research area of Image Understanding. Progress
has been achieved in the area of quantifying edge
detector parameters by pattern recognition
techniques as well as in edge elongation both in
monochrome and color scenes. In addition to the
above, higher level processes both in symbolic
change detection and synthesis of adjacent regions
are described. Finally considerable progress has
been experienced in the area of automatic scene
segmentation from signal processing (bottom up)
procedures. The preliminary success of this
algorithm is quite encouraging as it utilizes com-
pletely unsupervised pattern recognition clustering,
feature selection, and cluster optimization
techniques without the need for top-down or ex-
ternal guidance. The algorithm is based upon the
inherent homogeneity concept of image segments
but measured in N-dimensional vector space.

2.1 Scene Segmentation by Clustering

Guy Coleman

This project is rapidly advancing toward
fruition and represents a bottom up unaided
scene segmentation procedure which is based upon
bomogeneity concepts in N-dimensional vector
space., Mathematical pattern recognition, feature
selection and clustering techniques are utilized
and quantitative evaluations (comparisons) are
performed. Because of the success of this
project, it is reported on in greater detail in this
Image Understanding workshop.

2.2 Symbolic Change Analysis

Keith Price

Recent work in image understanding has
shown that symbolic techniques can be applied to a
large class of images with a variety of change
analysis tasks, The system to perform this
analysis is now operational at USC (having been
developed at CMU). Work is continuing in the
areas of: additional use of knowledge in matching,
additional task domains, the actual matching
function, the use of the change results, change
analysis in sequences of images, and the use of
these techniques in more general image under-
standing systems,




2.3 Synthesis of Adjacent Regions
Erica Rounds

This work describes an algcrithm for
reconstructing a digital image given the boundary
vector lists of relations contained in the image.
Permissible topological relations between regions
are adjacency and containment. Interior points
are assigned to regions on the basis of a small
set of ''"boundary types.' These encode the shape
of a contour segment connecting three adjacent
vertices. The algorithm processes all regions
together so that space and time requirements are
minimized.

2.4 Extension of Boundary Segments in a Multi-
Level System
Ramakant Nevatia and Kenneth Laws

This section describes continuing efforts in
our approach to scene segmentation by edge
detection based methods. Obtaining boundaries of
objects of interest is of central importance in
analysis of a scene. Previously we have described
a technique that links local edges detected in an
image into larger segments, providing partial
boundaries for objects and removing much of the
undesired textured background. Extension of such
edge segments to yield more complete (longer
segments) boundaries is described here.

2.5 Detection of Edges in Elongated Neighborhoods
Ramakant Nevatia and Peter Chuan

Here we describe a technique for detecting
edges that belong to elongated segments. This
restriction is expected to provide sensitivity to
desired types of edges and not to fine texture or
random noise (to which Sobel, Roberts' and
Hueckel operators tend to respond). The technique
is simply to convolve an image with elongated
neighborhoods in various directions., Each
convolution gives a value indicating the magnitude
of edge in that direction. The maximum value at
each point and associated direction are chosen as
indicative of edge magnitude and direction at that
point.

2.6 Color Edge Detection in Scene Segmentation

Ramakant Nevatia

A color edge detector, based on the
achromatic Hueckel edge operator has been des-
cribed previously. This report discusses the
usefulness of such color edges in scene segment-
ation in comparison to the use of achromatic
edges, and provides an update of the previous
results. The concept of edge linking in color
space is developed and it is demonstrated that the
use of such edges in color aid in building a more
robust and reliable system. Further experiment-
ation is required to determine if the improved
performance using color is worth the threefold
increase in the requirements of storage and
computation, at the current costs for these
resources,
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2.7 Calculation of Edge Detector Parameters by

Ho-Kashya
William K. Pratt and Ikram Abdou

In previous reports we have formulated edge
detection as the classical communication problem
of signal detection in the presence of noise. In
this work edge detection is discussed as a problem
of classifying patterns into two classes (edge and
no edge). Many techniques have been developed in
pattern recognition to solve this problem. One of
them, the Ho-Kashyap algorithm, will be analyzed.
The Ho-Kashyap algorithm is briefly reviewed, and
the algorithm is then used to find parameters of
the Roberts' Operator. Results obtained by these
parameters are compared with probabilities of
detection and false alarm derived theoretically.
The experimental results show quite good corre-
spondence with the theoretical, and suggest the
Ho-Kashyap algorithm can be a useful quantitative
method for edge detector design.

3. Image Processing Projects

This section surveys the progress made in
the past six months on various image processing
projects. Three new areas are discussed, those
of image filtering based on the human visual
system, optical filters from digitally constructed
kinoforms (holograms) and spatial warp techniques.
On-going projects include the estimation of object
boundaries in noise, and a posteriori restoration.
This latter project has experienced preliminary
success in deriving the phase component of the
OTF from spatially invariant distortions. Finally
one project has reached fruition and completion,
that of variable knot splines for image approxima-
tion. This technique has led to self-adaptive two-
dimensional approximation methods which auto-
matically sense the local activity of a region and
apply enough knots (samples) locally to minimize
a regional approximation. The technique has
applicability in bandwidth compression, image
understanding, and particularly in adaptive smart
sensing. In the former case, adaptive compres-
sions are available. In the latter case on-board
high resolution sensor reduction is possible, and
in the image understanding case, the knot density
represents a useful feature for higher level
processing,

3.1 Variable Knot Splines for Image Approximations
Harry C. Andrews

This report presents a degree of freedom or
information content analysis of images in the
context of digital image processing. As such it
represents an attempt to quantify the number of
truly independent samples one gathers with
imaging devices. Variable knot splines are utilized
in a two-dimensional approximation theory frame-
work, and sample (pixel) density is assigned
according to energy in the two-dimensional fourth
difference operators. Quite good adaptive
compression and approximation is obtained from
these results, as viewed in the accompanying
aerial reconnaissance scene, The adaptive nature
of the algorithm is evident in the farm regions as
compared to the urban scene. (See page 5 )




3.2 Image Filtering Based on Psychophysical
Characteristics of the Human Visual System
Charles Hall

In the past decade many physiological and
psychophysical experiments have given rise to a
fairly sophisticated mathematical nonlinear model.
This model has been extended to color perception
and is being exercised to test its usefulness in two
areas of application: first, as a tool in image
compression and second, as providing a space
in which useful image quality measures can be
quantitatively developed. It is anticipated that
rate distortion and other assumptions will become
much more realistic in the nonlinear perceptual
space developing in these studies.,

3.3 Optical Filters for Image Reconstruction
Alexander A, Sawchuk and Chung-Kai Hsueh

The report discusses the use of a computer
plotted hologram as the spatial filter in an incoher-
ent optical system. In the special situation where
the hologram contains phase variations only, it is
called a kinoform. One problem with the kinoform
is that it may not exist for a given impulse response,
Iteration methods on the computer are used to
obtain a kinoform which has a response very close
to the desired one., In addition if we allow the
kinoform to have a slow variation in amplitude as
well as in phase, then a perfect desired impulse
response can be obtained. One application of this
system is to give a continuous desampled output
from the discrete pixels on a CRT or other discrete
image display device. .

3.4 A Technique for A Posteriori Restoration
John Morton

This project is attempting to restore a blurred
image with a minimum of a priori knowledge. The
only assumptions are a spatially invariant point
spread function (PSF) and the extent of the PSF is
small compared to the extent of the image. Prog-
ress to date includes excellent recursive estima-
tion of the magnitude of the optical transfer function
(OTF) of the blur and good recursive estimation of
the phase of the OTF, Because the phase of the
distortion is considered extremely critical addition-
al effort is being spent on improved phase recovery.

3.5 %patial Warp Interpretation Technique
illiam K. Pratt

Image interpretation consists of a description
of a scene, or parts of a scene, based upon some
symbolic scene representation. A new technique
is described for image interpretation of a segmented
image containing perspective views of three-
dimensional objects against a fixed background.

3.6 Estimation-Detection of Object Boundaries in
Noisy Pictures
Nasser E, Nahi and Simon Lopez-Mora

Algorithms for successively estimating
boundaries have been developed in past research
reports. In this present report the problem is
formulated under a joint estimation-detection

context with an associated cost function. This
framework permits us to obtain an optimal
boundary estimation processor that includes a
choice for the detector component as well as a
procedure for optimal selection of the detection
threshold.

4. Smart Sensor Projects

Our smart sensor effort is progressing nicely
with a division of labor between USCIPI personnel
and Hughes Research Laboratory personnel, As
can be seen from the following, simulations at
USC indicated very small adaptive convolving
kernels can be quite useful for preprocessing
close to the front end of a sensor. In addition,
such processes, when implemented near the focal
plane, provide potential for reduced subsequent
dynamic range requirements in higher level
processes. The test facility at HRL is progres-
sing and the Sobel chip seems to be making the
usual progress through the variety of production
facilities necessary to configure such devices.
Similar comments can be applied to the Circuit
II, our first attempt at ''adaptive on=-chip"
processing. Finally preliminary efforts are
underway to design a real time CCD focal plane
image segmentor. This represents our first
entry into designing actual image understanding
algorithms for potential on-board smart sensor
implementation,

4.1 Enhancement with 3 x 3 Kernels
Harry C. Andrews

More sophisticated modern-day digital image

processing has led to the study of adaptive (space-

variant) enhancement techniques. Coupled with
the ability of both smart sensor and digital refresh
technology to implement 3 x 3 convolutions within
1/30 second for 512 x 512 x 8 imagery, it was
decided to undertake a study of the power and
limitations that such 3 x 3 convolving kernel
operations could be utilized to the task of smart
sensor two-dimensional signal processing. The
underlying theme for this study is the utilization
of 3 x 3 kernels for use as control signals to
implement both linear and nonlinear as well as
spatially invariant and variant (adaptive) signal
processing functions in two dimensions. Coupled
with this motivation is the fact that USCIPI and
Hughes Research Laboratories are jointly em-
barking upon the construction of circuits which
would potentially be able to implement these
signal processing functions. A large variety of
algorithms have been developed for these tasks,
and probably those which are the most successful
would be labeled as nonlinear,

4.2 Real Time Implementation of Image

Segmentation

C{l“y Coleman

The segmentation procedure developed else-
where in this reposrt is currently being used to
segment images on a general purpose computer.
It is possible to implement this scheme, with

some suitable modifications, to segment images
in near real time, that is, at television rates,




The study of such a real time system is the subject
of this section, and block diagrams are configured
and sized for potential implementation.

4.3 CCD Image Processing Circuitry
Graham Nudd, Hughes Research Laboratories

During the period covered by this report we
have concentrated our efforts principally on
developing the integrated circuits necessary to
demonstrate feasibility and to verify our concepts.
Two circuits have been selected for implementa-
tion, each operating on a 3 x 3 array of picture
elements.

The first circuit (Test Circuit I), an imple-
mentation of the Sobel Operator for edge detection,
is fabricated as a n-channel surface CCD and is
designed to operate at 10 MHz rate with accuracy
of six bits or better. The detailed design and
layout of this circuit has now been completed, and
devices should be processed by April 1977.

Test Circuit II contains five separate algo-
rithms; low pass filtering, edge detection, unsharp
masking, binarization, and adaptive contrast
enhancement. This circuit will be built on a
second n-channel test chip, and we hope to have
devices processed by mid-year. We anticipate
that this chip will be approximately 190 mil x
190 mil, and if there is sufficient area, we will
include other test circuits on the same chip. The
exact space available for other circuits will not be
known until a detailed layout has been completed in
the next month or so.

Both circuits are analog implementations
which perform arithmetic functions, such as the
addition, intensity weightings, and the absolute
value operation required in the Sobel, at rates
equivalent to 200 MHz., Further, the relatively
small size of these circuits offer the possibility of
highly parallel operations.
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5, Institute Facilities

Recent interest and external visitor pressure
has initiated the following report in this section.
Essentially due to academic courses, summer
short courses, research efforts and general
interest in the USC Image Processing Institute, a
brief description of the facilities developed to
date are reported herein. A bit of the design
philosophy as well as user oriented scenarios are
presented for the reader to get a better feel for the
capabilities (and limitations) currently available
at the USCIPI. For additional details on the
laboratories, please consult the various operating
manuals and/or cognizant personnel respectively
responsible for the various aspects of the Institute.

6. Recent Ph.D, Dissertations

This section includes those dissertations
completed since the last reporting period. The
one listed here reflects an effort at utilizing two-
dimensional approximation theory to much more
effectively develop adaptive techniques for
efficient image approximations. The results of
the research are immedjately applicable to high
resolution sensors in which channel bandwidth
does not permit transmission of the Nyquist
resolution everywhere., By on-board variable
knot sampling adaptive approximations to the high
resolution image are obtained with low dynamic
range coefficients, In addition the knot (or
sample) density provides a valuable feature for
potential on-board segmentation and higher level
decision processes,

7. Recent Institute Personnel Publications

This section lists the publications, in the
open literature by USCIFI personnel. These
papers have either appeared, been accepted, or
have been submitted for publication in the past
six months. 21 such papers are listed.
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Parameter Reduction = 2, 36:1

Figure 7.
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MSE = 1.2%

MSE = .39%

Bicubic Spline Reconstructions and Associated Knot
Densities for a Reconnaissance Photograph Using
Subregions of Size 16 by 16,




